Câu hỏi:
25/01/2025 22Biết \[\mathop {\lim }\limits_{{\rm{x}} \to 1} \frac{{\sqrt {{{\rm{x}}^2} + {\rm{x}} + 2} - \sqrt[3]{{7{\rm{x}} + 1}}}}{{\sqrt 2 ({\rm{x}} - 1)}} = \frac{{{\rm{a}}\sqrt {\rm{2}} }}{{\rm{b}}}{\rm{ + c}}\] với \[{\rm{a, b, c}} \in \mathbb{Z}\] và \[\frac{{\rm{a}}}{{\rm{b}}}\] là phân số tối giản. Giá trị của a + b + c bằng:
Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
Ta có \[\mathop {\lim }\limits_{{\rm{x}} \to 1} \frac{{\sqrt {{{\rm{x}}^2} + {\rm{x}} + 2} - \sqrt[3]{{7{\rm{x}} + 1}}}}{{\sqrt 2 \left( {{\rm{x}} - 1} \right)}} = \mathop {\lim }\limits_{{\rm{x}} \to 1} \frac{{\sqrt {{{\rm{x}}^2} + {\rm{x}} + 2} - 2 + 2 - \sqrt[3]{{7{\rm{x}} + 1}}}}{{\sqrt 2 \left( {{\rm{x}} - 1} \right)}}\]
\[ = \mathop {\lim }\limits_{{\rm{x}} \to 1} \frac{{\sqrt {{{\rm{x}}^2} + {\rm{x}} + 2} - 2}}{{\sqrt 2 \left( {{\rm{x}} - 1} \right)}} + \mathop {\lim }\limits_{{\rm{x}} \to 1} \frac{{2 - \sqrt[3]{{7{\rm{x}} + 1}}}}{{\sqrt 2 \left( {{\rm{x}} - 1} \right)}} = {\rm{I + J}}\]
Tính\[{\rm{I}} = \mathop {\lim }\limits_{{\rm{x}} \to 1} \frac{{\sqrt {{{\rm{x}}^2} + {\rm{x}} + 2} - 2}}{{\sqrt 2 \left( {{\rm{x}} - 1} \right)}} = \mathop {\lim }\limits_{{\rm{x}} \to 1} \frac{{{{\rm{x}}^2} + {\rm{x}} + 2 - 4}}{{\sqrt 2 \left( {{\rm{x}} - 1} \right)\left( {\sqrt {{{\rm{x}}^2} + {\rm{x}} + 2} + 2} \right)}}\]
\[ = \mathop {\lim }\limits_{{\rm{x}} \to 1} \frac{{\left( {{\rm{x}} - 1} \right)\left( {{\rm{x}} + 2} \right)}}{{\sqrt 2 \left( {{\rm{x}} - 1} \right)\left( {\sqrt {{{\rm{x}}^2} + {\rm{x}} + 2} + 2} \right)}} = \mathop {\lim }\limits_{{\rm{x}} \to 1} \frac{{{\rm{x}} + 2}}{{\sqrt 2 \left( {\sqrt {{{\rm{x}}^2} + {\rm{x}} + 2} + 2} \right)}} = \frac{3}{{4\sqrt 2 }}\]
và\[{\rm{J}} = \mathop {\lim }\limits_{{\rm{x}} \to 1} \frac{{2 - \sqrt[3]{{7{\rm{x}} + 1}}}}{{\sqrt 2 \left( {{\rm{x}} - 1} \right)}} = \mathop {\lim }\limits_{{\rm{x}} \to 1} \frac{{8 - 7{\rm{x}} - 1}}{{\sqrt 2 \left( {{\rm{x}} - 1} \right)\left[ {4 + 2\sqrt[3]{{7{\rm{x}} + 1}} + {{\left( {\sqrt[3]{{7{\rm{x}} + 1}}} \right)}^2}} \right]}}\]
\[ = \mathop {\lim }\limits_{{\rm{x}} \to 1} \frac{{ - 7}}{{\sqrt 2 \left[ {4 + 2\sqrt[3]{{7{\rm{x}} + 1}} + {{\left( {\sqrt[3]{{7{\rm{x}} + 1}}} \right)}^2}} \right]}} = \frac{{ - 7}}{{12\sqrt 2 }}\]
Do đó\[\mathop {\lim }\limits_{{\rm{x}} \to 1} \frac{{\sqrt {{{\rm{x}}^2} + {\rm{x}} + 2} - \sqrt[3]{{7{\rm{x}} + 1}}}}{{\sqrt 2 \left( {{\rm{x}} - 1} \right)}} = {\rm{I + J}} = \frac{{\sqrt 2 }}{{12}}\]
Suy ra a = 1, b = 12, c = 0. Vậy a + b + c = 13.
Đáp án cần chọn là: A
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Tìm giới hạn \[{\rm{A}} = \mathop {\lim }\limits_{{\rm{x}} \to 1} \frac{{{{\rm{x}}^{\rm{n}}} - 1}}{{{{\rm{x}}^{\rm{m}}} - 1}},{\rm{m}},{\rm{n}} \in {\mathbb{N}^ * }\]:
Câu 2:
Cho \[\mathop {\lim }\limits_{{\rm{x}} \to 4} \frac{{{\rm{f(x)}} - 5}}{{{\rm{x}} - 4}} = 5\]. Tính giới hạn \[\mathop {\lim }\limits_{{\rm{x}} \to 4} \frac{{{\rm{f}}\left( {\rm{x}} \right) - 5}}{{\left( {\sqrt {\rm{x}} - 2} \right)\left( {\sqrt {6{\rm{f(x)}} + 6} + 4} \right)}}\]
Câu 3:
Hàm số y = f(x) có giới hạn L khi \[{\rm{x}} \to {{\rm{x}}_0}\] có kí hiệu là:
Câu 4:
Cho a, b là các số nguyên và\[\mathop {\lim }\limits_{{\rm{x}} \to 1} \frac{{{\rm{a}}{{\rm{x}}^{\rm{2}}}{\rm{ + bx}} - {\rm{5}}}}{{{\rm{x}} - 1}} = 20\]. Tính \[{\rm{P = }}{{\rm{a}}^{\rm{2}}}{\rm{ + }}{{\rm{b}}^{\rm{2}}}\]
Câu 5:
Cho hàm số \[{\rm{f}}\left( {\rm{x}} \right) = \left\{ {\begin{array}{*{20}{c}}{\frac{{\sqrt {{\rm{mx + 1}}} - 1}}{{\rm{x}}}\,\,{\rm{khi}}\,\,{\rm{x}} \ne 0}\\{4{{\rm{x}}^2} + 5{\rm{n}}\,\,{\rm{khi}}\,\,{\rm{x}} = 0}\end{array}} \right.\left( {{\rm{m,n}} \in \mathbb{R}} \right)\] liên tục tại x0 = 0. Tìm hệ thức liên hệ giữa m và n
Câu 6:
Tính giá trị của giới hạn \[\mathop {\lim }\limits_{{\rm{x}} \to 2} \left( {2 + {\rm{x}}} \right)\]
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
20 câu trắc nghiệm Toán 11 Kết nối tri thức Mẫu số liệu ghép nhóm có đáp án
12 câu Trắc nghiệm Toán 11 Kết nối tri thức Giá trị lượng giác của góc lượng giác có đáp án
Bộ 20 đề thi học kì 1 Toán 11 năm 2022 - 2023 có đáp án (Đề 1)
100 câu trắc nghiệm Phép dời hình cơ bản (phần 1)
10 Bài tập Tính xác suất của biến cố hợp của hai biến cố bất kì bằng cách sử dụng công thức cộng xác suất và phương pháp tổ hợp (có lời giải)
10 Bài tập Trung vị, tứ phân vị của mẫu số liệu ghép nhóm và ý nghĩa (có lời giải)
10 Bài tập Tổng của cấp số nhân lùi vô hạn và các bài toán liên quan (có lời giải)
về câu hỏi!