Câu hỏi:

25/01/2025 111

Biết \[\mathop {\lim }\limits_{{\rm{x}} \to 1} \frac{{\sqrt {{{\rm{x}}^2} + {\rm{x}} + 2} - \sqrt[3]{{7{\rm{x}} + 1}}}}{{\sqrt 2 ({\rm{x}} - 1)}} = \frac{{{\rm{a}}\sqrt {\rm{2}} }}{{\rm{b}}}{\rm{ + c}}\] với \[{\rm{a, b, c}} \in \mathbb{Z}\] và \[\frac{{\rm{a}}}{{\rm{b}}}\] là phân số tối giản. Giá trị của a + b + c bằng:

Đáp án chính xác

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

Đề toán-lý-hóa Đề văn-sử-địa Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có \[\mathop {\lim }\limits_{{\rm{x}} \to 1} \frac{{\sqrt {{{\rm{x}}^2} + {\rm{x}} + 2} - \sqrt[3]{{7{\rm{x}} + 1}}}}{{\sqrt 2 \left( {{\rm{x}} - 1} \right)}} = \mathop {\lim }\limits_{{\rm{x}} \to 1} \frac{{\sqrt {{{\rm{x}}^2} + {\rm{x}} + 2} - 2 + 2 - \sqrt[3]{{7{\rm{x}} + 1}}}}{{\sqrt 2 \left( {{\rm{x}} - 1} \right)}}\]

\[ = \mathop {\lim }\limits_{{\rm{x}} \to 1} \frac{{\sqrt {{{\rm{x}}^2} + {\rm{x}} + 2} - 2}}{{\sqrt 2 \left( {{\rm{x}} - 1} \right)}} + \mathop {\lim }\limits_{{\rm{x}} \to 1} \frac{{2 - \sqrt[3]{{7{\rm{x}} + 1}}}}{{\sqrt 2 \left( {{\rm{x}} - 1} \right)}} = {\rm{I + J}}\]

Tính\[{\rm{I}} = \mathop {\lim }\limits_{{\rm{x}} \to 1} \frac{{\sqrt {{{\rm{x}}^2} + {\rm{x}} + 2} - 2}}{{\sqrt 2 \left( {{\rm{x}} - 1} \right)}} = \mathop {\lim }\limits_{{\rm{x}} \to 1} \frac{{{{\rm{x}}^2} + {\rm{x}} + 2 - 4}}{{\sqrt 2 \left( {{\rm{x}} - 1} \right)\left( {\sqrt {{{\rm{x}}^2} + {\rm{x}} + 2} + 2} \right)}}\]

\[ = \mathop {\lim }\limits_{{\rm{x}} \to 1} \frac{{\left( {{\rm{x}} - 1} \right)\left( {{\rm{x}} + 2} \right)}}{{\sqrt 2 \left( {{\rm{x}} - 1} \right)\left( {\sqrt {{{\rm{x}}^2} + {\rm{x}} + 2} + 2} \right)}} = \mathop {\lim }\limits_{{\rm{x}} \to 1} \frac{{{\rm{x}} + 2}}{{\sqrt 2 \left( {\sqrt {{{\rm{x}}^2} + {\rm{x}} + 2} + 2} \right)}} = \frac{3}{{4\sqrt 2 }}\]

và\[{\rm{J}} = \mathop {\lim }\limits_{{\rm{x}} \to 1} \frac{{2 - \sqrt[3]{{7{\rm{x}} + 1}}}}{{\sqrt 2 \left( {{\rm{x}} - 1} \right)}} = \mathop {\lim }\limits_{{\rm{x}} \to 1} \frac{{8 - 7{\rm{x}} - 1}}{{\sqrt 2 \left( {{\rm{x}} - 1} \right)\left[ {4 + 2\sqrt[3]{{7{\rm{x}} + 1}} + {{\left( {\sqrt[3]{{7{\rm{x}} + 1}}} \right)}^2}} \right]}}\]

\[ = \mathop {\lim }\limits_{{\rm{x}} \to 1} \frac{{ - 7}}{{\sqrt 2 \left[ {4 + 2\sqrt[3]{{7{\rm{x}} + 1}} + {{\left( {\sqrt[3]{{7{\rm{x}} + 1}}} \right)}^2}} \right]}} = \frac{{ - 7}}{{12\sqrt 2 }}\]

Do đó\[\mathop {\lim }\limits_{{\rm{x}} \to 1} \frac{{\sqrt {{{\rm{x}}^2} + {\rm{x}} + 2} - \sqrt[3]{{7{\rm{x}} + 1}}}}{{\sqrt 2 \left( {{\rm{x}} - 1} \right)}} = {\rm{I + J}} = \frac{{\sqrt 2 }}{{12}}\]

Suy ra a = 1, b = 12, c = 0. Vậy a + b + c = 13.

Đáp án cần chọn là: A

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Biết giới hạn \[\mathop {\lim }\limits_{{\rm{x}} \to 2} \frac{{\sqrt {3{\rm{x}} + 3} - {\rm{m}}}}{{{\rm{x}} - 2}} = \frac{{\rm{a}}}{{\rm{b}}}\], m là số thực; a, b là các số nguyên và \[\frac{{\rm{a}}}{{\rm{b}}}\] tối giản. Tính a − b

Xem đáp án » 25/01/2025 100

Câu 2:

Cho hàm số \({\rm{f}}\left( {\rm{x}} \right) = \left\{ {\begin{array}{*{20}{c}}{{{\rm{x}}^2} - 3\,\,{\rm{khi}}\,\,{\rm{x}} \ge 2}\\{{\rm{x}} - 1\,\,{\rm{khi}}\,\,{\rm{x}} < 2}\end{array}} \right.\). Chọn kết quả đúng của \[\mathop {\lim }\limits_{{\rm{x}} \to 2} {\rm{f}}\left( {\rm{x}} \right)\]

Xem đáp án » 25/01/2025 92

Câu 3:

Tìm giới hạn \[{\rm{A}} = \mathop {\lim }\limits_{{\rm{x}} \to 1} \frac{{{{\rm{x}}^{\rm{n}}} - 1}}{{{{\rm{x}}^{\rm{m}}} - 1}},{\rm{m}},{\rm{n}} \in {\mathbb{N}^ * }\]:

Xem đáp án » 25/01/2025 74

Câu 4:

Cho đa thức P(x) thỏa mãn \[\mathop {\lim }\limits_{{\rm{x}} \to 3} \frac{{{\rm{P}}\left( {\rm{x}} \right) - 2}}{{{\rm{x}} - 3}} = 2\]. Tính \[\mathop {\lim }\limits_{{\rm{x}} \to 3} \frac{{{\rm{P}}\left( {\rm{x}} \right) - 2}}{{\left( {{{\rm{x}}^2} - 9} \right)\left( {\sqrt {{\rm{P}}\left( {\rm{x}} \right) + 2} + 1} \right)}}\]

Xem đáp án » 25/01/2025 71

Câu 5:

Giá trị của giới hạn \[\mathop {\lim }\limits_{{\rm{x}} \to 2} \sqrt {\frac{{\left( {{{\rm{x}}^2} + 3} \right){\rm{x}}}}{{{{\rm{x}}^3} - 1}}} \] bằng

Xem đáp án » 25/01/2025 71

Câu 6:

Cho \[\mathop {\lim }\limits_{{\rm{x}} \to 4} \frac{{{\rm{f(x)}} - 5}}{{{\rm{x}} - 4}} = 5\]. Tính giới hạn \[\mathop {\lim }\limits_{{\rm{x}} \to 4} \frac{{{\rm{f}}\left( {\rm{x}} \right) - 5}}{{\left( {\sqrt {\rm{x}} - 2} \right)\left( {\sqrt {6{\rm{f(x)}} + 6} + 4} \right)}}\]

Xem đáp án » 25/01/2025 61