Câu hỏi:

25/01/2025 40

Cho \[{\rm{a, b}} \in {\rm{R}}\] thỏa mãn\[\mathop {{\rm{lim}}}\limits_{{\rm{x}} \to {\rm{1}}} \frac{{\sqrt {{\rm{(a + 5)}}{{\rm{x}}^{\rm{2}}} - {\rm{2(a + 2)x + 2a + b + 7}}} - \sqrt {{\rm{6x + 3}}} }}{{{{\rm{x}}^{\rm{2}}} - {\rm{2x + 1}}}}\]\[\mathop {{\rm{lim}}}\limits_{{\rm{x}} \to {\rm{1}}} \frac{{\sqrt {\left( {{\rm{a + 5}}} \right){{\rm{x}}^{\rm{2}}} - {\rm{2}}\left( {{\rm{a + 2}}} \right){\rm{x + 2a + b + 7}}} - \sqrt {{\rm{6x + 3}}} }}{{{{\rm{x}}^{\rm{2}}} - {\rm{2x + 1 }}}}{\rm{ = }}\frac{{{\rm{13}}}}{{{\rm{12}}}}\]. Tính giá trị của \[{{\rm{a}}^{\rm{2}}}{\rm{ + }}{{\rm{b}}^2}\]

Đáp án chính xác

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

Đề toán-lý-hóa Đề văn-sử-địa Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Vì giới hạn đã cho tồn tại nên \[\mathop {{\rm{lim}}}\limits_{{\rm{x}} \to {\rm{1}}} \left( {\sqrt {\left( {{\rm{a + 5}}} \right){{\rm{x}}^{\rm{2}}} - {\rm{2}}\left( {{\rm{a + 2}}} \right){\rm{x + 2a + b + 7}}} - \sqrt {{\rm{6x + 3}}} } \right){\rm{ = 0}}\]

\[ \Rightarrow \sqrt {{\rm{a + b + 8}}} - {\rm{3 = 0}} \Rightarrow {\rm{b = 1}} - {\rm{a}}\]

Khi đó\[\mathop {\lim }\limits_{{\rm{x}} \to 1} \frac{{\sqrt {\left( {{\rm{a + 5}}} \right){{\rm{x}}^{\rm{2}}} - {\rm{2}}\left( {{\rm{a + 2}}} \right){\rm{x + 2a + b + 7}}} - \sqrt {{\rm{6x + 3}}} }}{{{{\rm{x}}^{\rm{2}}} - {\rm{2x + 1}}}}{\rm{ = }}\frac{{13}}{{12}}\]

\[ \Rightarrow \mathop {{\rm{lim}}}\limits_{{\rm{x}} \to {\rm{1}}} \frac{{\sqrt {\left( {{\rm{a + 5}}} \right){{\rm{x}}^{\rm{2}}} - {\rm{2}}\left( {{\rm{a + 2}}} \right){\rm{x + a + 8}}} - \sqrt {{\rm{6x + 3}}} }}{{{{\rm{x}}^{\rm{2}}} - {\rm{2x + 1}}}}{\rm{ = }}\frac{{{\rm{13}}}}{{{\rm{12}}}}\]

\[ \Rightarrow \mathop {{\rm{lim}}}\limits_{{\rm{x}} \to {\rm{1}}} \frac{{{\rm{a + 5}}}}{{\left( {\sqrt {{\rm{(a + 5)}}{{\rm{x}}^{\rm{2}}} - {\rm{2(a + 2)x + a + 8}}} {\rm{ + }}\sqrt {{\rm{6x + 3}}} } \right)}}{\rm{ = }}\frac{{{\rm{13}}}}{{{\rm{12}}}}\]

\[ \Leftrightarrow \frac{{{\rm{a}} + 5}}{6} = \frac{{13}}{{12}} \Leftrightarrow {\rm{a}} = \frac{3}{2} \Rightarrow {\rm{b}} = - \frac{1}{2} \Rightarrow {{\rm{a}}^{\rm{2}}}{\rm{ + }}{{\rm{b}}^{\rm{2}}} = \frac{5}{2}\]

Chọn đáp án B

Đáp án cần chọn là: B

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Biết \[\mathop {\lim }\limits_{{\rm{x}} \to 1} \frac{{\sqrt {{{\rm{x}}^2} + {\rm{x}} + 2} - \sqrt[3]{{7{\rm{x}} + 1}}}}{{\sqrt 2 ({\rm{x}} - 1)}} = \frac{{{\rm{a}}\sqrt {\rm{2}} }}{{\rm{b}}}{\rm{ + c}}\] với \[{\rm{a, b, c}} \in \mathbb{Z}\] và \[\frac{{\rm{a}}}{{\rm{b}}}\] là phân số tối giản. Giá trị của a + b + c bằng:

Xem đáp án » 25/01/2025 112

Câu 2:

Biết giới hạn \[\mathop {\lim }\limits_{{\rm{x}} \to 2} \frac{{\sqrt {3{\rm{x}} + 3} - {\rm{m}}}}{{{\rm{x}} - 2}} = \frac{{\rm{a}}}{{\rm{b}}}\], m là số thực; a, b là các số nguyên và \[\frac{{\rm{a}}}{{\rm{b}}}\] tối giản. Tính a − b

Xem đáp án » 25/01/2025 100

Câu 3:

Cho hàm số \({\rm{f}}\left( {\rm{x}} \right) = \left\{ {\begin{array}{*{20}{c}}{{{\rm{x}}^2} - 3\,\,{\rm{khi}}\,\,{\rm{x}} \ge 2}\\{{\rm{x}} - 1\,\,{\rm{khi}}\,\,{\rm{x}} < 2}\end{array}} \right.\). Chọn kết quả đúng của \[\mathop {\lim }\limits_{{\rm{x}} \to 2} {\rm{f}}\left( {\rm{x}} \right)\]

Xem đáp án » 25/01/2025 92

Câu 4:

Tìm giới hạn \[{\rm{A}} = \mathop {\lim }\limits_{{\rm{x}} \to 1} \frac{{{{\rm{x}}^{\rm{n}}} - 1}}{{{{\rm{x}}^{\rm{m}}} - 1}},{\rm{m}},{\rm{n}} \in {\mathbb{N}^ * }\]:

Xem đáp án » 25/01/2025 74

Câu 5:

Cho đa thức P(x) thỏa mãn \[\mathop {\lim }\limits_{{\rm{x}} \to 3} \frac{{{\rm{P}}\left( {\rm{x}} \right) - 2}}{{{\rm{x}} - 3}} = 2\]. Tính \[\mathop {\lim }\limits_{{\rm{x}} \to 3} \frac{{{\rm{P}}\left( {\rm{x}} \right) - 2}}{{\left( {{{\rm{x}}^2} - 9} \right)\left( {\sqrt {{\rm{P}}\left( {\rm{x}} \right) + 2} + 1} \right)}}\]

Xem đáp án » 25/01/2025 71

Câu 6:

Giá trị của giới hạn \[\mathop {\lim }\limits_{{\rm{x}} \to 2} \sqrt {\frac{{\left( {{{\rm{x}}^2} + 3} \right){\rm{x}}}}{{{{\rm{x}}^3} - 1}}} \] bằng

Xem đáp án » 25/01/2025 71

Câu 7:

Cho \[\mathop {\lim }\limits_{{\rm{x}} \to 4} \frac{{{\rm{f(x)}} - 5}}{{{\rm{x}} - 4}} = 5\]. Tính giới hạn \[\mathop {\lim }\limits_{{\rm{x}} \to 4} \frac{{{\rm{f}}\left( {\rm{x}} \right) - 5}}{{\left( {\sqrt {\rm{x}} - 2} \right)\left( {\sqrt {6{\rm{f(x)}} + 6} + 4} \right)}}\]

Xem đáp án » 25/01/2025 61