Câu hỏi:
25/01/2025 83Tìm giới hạn \[{\rm{A}} = \mathop {\lim }\limits_{{\rm{x}} \to 1} \frac{{{{\rm{x}}^{\rm{n}}} - 1}}{{{{\rm{x}}^{\rm{m}}} - 1}},{\rm{m}},{\rm{n}} \in {\mathbb{N}^ * }\]:
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025).
Quảng cáo
Trả lời:
Ta có
\[{\rm{A = }}\mathop {{\rm{lim}}}\limits_{{\rm{x}} \to {\rm{1}}} \frac{{{{\rm{x}}^{\rm{n}}} - {\rm{1}}}}{{{{\rm{x}}^{\rm{m}}} - {\rm{1}}}}{\rm{ = }}\mathop {{\rm{lim}}}\limits_{{\rm{x}} \to {\rm{1}}} \frac{{{\rm{(x}} - {\rm{1)(}}{{\rm{x}}^{{\rm{n}} - {\rm{1}}}}{\rm{ + }}{{\rm{x}}^{{\rm{n}} - {\rm{2}}}}{\rm{ + }}{{\rm{x}}^{{\rm{n}} - {\rm{3}}}}{\rm{ + }}...{\rm{ + x + 1)}}}}{{{\rm{(x}} - {\rm{1)(}}{{\rm{x}}^{{\rm{m}} - {\rm{1}}}}{\rm{ + }}{{\rm{x}}^{{\rm{m}} - {\rm{2}}}}{\rm{ + }}{{\rm{x}}^{{\rm{m}} - {\rm{3}}}}{\rm{ + }}...{\rm{ + x + 1)}}}}\]
\[ = \mathop {\lim }\limits_{{\rm{x}} \to 1} \frac{{{{\rm{x}}^{{\rm{n}} - {\rm{1}}}}{\rm{ + }}{{\rm{x}}^{{\rm{n}} - {\rm{2}}}}{\rm{ + }}{{\rm{x}}^{{\rm{n}} - {\rm{3}}}}{\rm{ + }}...{\rm{ + x + 1}}}}{{{{\rm{x}}^{{\rm{m}} - {\rm{1}}}}{\rm{ + }}{{\rm{x}}^{{\rm{m}} - {\rm{2}}}}{\rm{ + }}{{\rm{x}}^{{\rm{m}} - 3}}{\rm{ + }}...{\rm{ + x + 1}}}} = \frac{{1 + 1 + 1 + ... + 1 + 1}}{{1 + 1 + 1 + ... + 1 + 1}} = \frac{{\rm{n}}}{{\rm{m}}}\]
Chọn đáp án D
Đáp án cần chọn là: D
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Biết \[\mathop {\lim }\limits_{{\rm{x}} \to 1} \frac{{\sqrt {{{\rm{x}}^2} + {\rm{x}} + 2} - \sqrt[3]{{7{\rm{x}} + 1}}}}{{\sqrt 2 ({\rm{x}} - 1)}} = \frac{{{\rm{a}}\sqrt {\rm{2}} }}{{\rm{b}}}{\rm{ + c}}\] với \[{\rm{a, b, c}} \in \mathbb{Z}\] và \[\frac{{\rm{a}}}{{\rm{b}}}\] là phân số tối giản. Giá trị của a + b + c bằng:
Câu 2:
Biết giới hạn \[\mathop {\lim }\limits_{{\rm{x}} \to 2} \frac{{\sqrt {3{\rm{x}} + 3} - {\rm{m}}}}{{{\rm{x}} - 2}} = \frac{{\rm{a}}}{{\rm{b}}}\], m là số thực; a, b là các số nguyên và \[\frac{{\rm{a}}}{{\rm{b}}}\] tối giản. Tính a − b
Câu 3:
Cho hàm số \({\rm{f}}\left( {\rm{x}} \right) = \left\{ {\begin{array}{*{20}{c}}{{{\rm{x}}^2} - 3\,\,{\rm{khi}}\,\,{\rm{x}} \ge 2}\\{{\rm{x}} - 1\,\,{\rm{khi}}\,\,{\rm{x}} < 2}\end{array}} \right.\). Chọn kết quả đúng của \[\mathop {\lim }\limits_{{\rm{x}} \to 2} {\rm{f}}\left( {\rm{x}} \right)\]
Câu 4:
Cho đa thức P(x) thỏa mãn \[\mathop {\lim }\limits_{{\rm{x}} \to 3} \frac{{{\rm{P}}\left( {\rm{x}} \right) - 2}}{{{\rm{x}} - 3}} = 2\]. Tính \[\mathop {\lim }\limits_{{\rm{x}} \to 3} \frac{{{\rm{P}}\left( {\rm{x}} \right) - 2}}{{\left( {{{\rm{x}}^2} - 9} \right)\left( {\sqrt {{\rm{P}}\left( {\rm{x}} \right) + 2} + 1} \right)}}\]
Câu 5:
Giá trị của giới hạn \[\mathop {\lim }\limits_{{\rm{x}} \to 2} \sqrt {\frac{{\left( {{{\rm{x}}^2} + 3} \right){\rm{x}}}}{{{{\rm{x}}^3} - 1}}} \] bằng
Câu 6:
Cho giới hạn \[\mathop {\lim }\limits_{{\rm{x}} \to + \infty } \left( {\sqrt {36{{\rm{x}}^2} + 5{\rm{ax}} + 1} - 6{\rm{x}} + {\rm{b}}} \right) = \frac{{20}}{3}\] và đường thẳng
\[{\rm{\Delta }}:{\rm{y = ax + 6b}}\] đi qua điểm M(3;42) với \[{\rm{a, b}} \in \mathbb{R}\]. Giá trị của biểu thức \[{\rm{T = }}{{\rm{a}}^{\rm{2}}}{\rm{ + }}{{\rm{b}}^2}\] là:
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
10 Bài tập Biến cố hợp. Biến cố giao (có lời giải)
38 câu trắc nghiệm Toán 11 Kết nối tri thức Lôgarit có đáp án
100 câu trắc nghiệm Đạo hàm cơ bản (P1)
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
Bài tập Xác suất ôn thi THPT Quốc gia có lời giải (P1)
15 câu Trắc nghiệm Khoảng cách có đáp án (Nhận biết)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận