Câu hỏi:
25/01/2025 44Cho a, b là các số dương. Biết \[\mathop {\lim }\limits_{{\rm{x}} \to - \infty } \left( {\sqrt {9{{\rm{x}}^2} - {\rm{ax}}} + \sqrt[3]{{{\rm{27}}{{\rm{x}}^{\rm{3}}}{\rm{ + b}}{{\rm{x}}^{\rm{2}}}{\rm{ + 5}}}}} \right) = \frac{7}{{27}}\] . Tìm giá trị lớn nhất của a. b
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
\[\mathop {\lim }\limits_{{\rm{x}} \to - \infty } \left( {\sqrt {9{{\rm{x}}^2} - {\rm{ax}}} + \sqrt[3]{{27{{\rm{x}}^3} + {\rm{b}}{{\rm{x}}^2} + 5}}} \right) = \mathop {\lim }\limits_{{\rm{x}} \to - \infty } \left( {\sqrt {9{{\rm{x}}^2} - {\rm{ax}}} + {\rm{3x}} + \sqrt[3]{{27{{\rm{x}}^3} + {\rm{b}}{{\rm{x}}^2} + 5}} - 3{\rm{x}}} \right)\]
\[ = \mathop {\lim }\limits_{{\rm{x}} \to - \infty } \left( {\sqrt {9{{\rm{x}}^2} - {\rm{ax}}} + 3{\rm{x}}} \right) + \mathop {\lim }\limits_{{\rm{x}} \to - \infty } \left( {\sqrt[3]{{{\rm{27}}{{\rm{x}}^{\rm{3}}}{\rm{ + b}}{{\rm{x}}^{\rm{2}}}{\rm{ + 5}}}} - 3{\rm{x}}} \right)\]
Ta có :
\[\mathop {\lim }\limits_{{\rm{x}} \to - \infty } \left( {\sqrt {9{{\rm{x}}^2} - {\rm{ax}}} + 3{\rm{x}}} \right) = \mathop {\lim }\limits_{{\rm{x}} \to - \infty } \frac{{ - {\rm{ax}}}}{{\sqrt {9{{\rm{x}}^2} - {\rm{ax}}} - 3{\rm{x}}}} = \mathop {\lim }\limits_{{\rm{x}} \to - \infty } \frac{{\rm{a}}}{{\sqrt {9 - \frac{{\rm{a}}}{{\rm{x}}}} + 3}} = \frac{{\rm{a}}}{{\rm{6}}}\]
Ta có :
\[\mathop {\lim }\limits_{{\rm{x}} \to - \infty } \left( {\sqrt[3]{{{\rm{27}}{{\rm{x}}^{\rm{3}}}{\rm{ + b}}{{\rm{x}}^{\rm{2}}}{\rm{ + 5}}}} - {\rm{3x}}} \right)\]
\[ = \mathop {\lim }\limits_{{\rm{x}} \to - \infty } \frac{{\left( {\sqrt[3]{{{\rm{27}}{{\rm{x}}^{\rm{3}}}{\rm{ + b}}{{\rm{x}}^{\rm{2}}}{\rm{ + 5}}}} - 3{\rm{x}}} \right)\left( {\sqrt[3]{{{{\left( {{\rm{27}}{{\rm{x}}^{\rm{3}}}{\rm{ + b}}{{\rm{x}}^{\rm{2}}}{\rm{ + 5}}} \right)}^2}}} + 3{\rm{x}}.\sqrt[3]{{{\rm{27}}{{\rm{x}}^{\rm{3}}}{\rm{ + b}}{{\rm{x}}^{\rm{2}}}{\rm{ + 5}}}} + 9{{\rm{x}}^2}} \right)}}{{\sqrt[3]{{{{\left( {{\rm{27}}{{\rm{x}}^{\rm{3}}}{\rm{ + b}}{{\rm{x}}^{\rm{2}}}{\rm{ + 5}}} \right)}^2}}} + 3{\rm{x}}.\sqrt[3]{{{\rm{27}}{{\rm{x}}^{\rm{3}}}{\rm{ + b}}{{\rm{x}}^{\rm{2}}}{\rm{ + 5}}}} + 9{{\rm{x}}^2}}}\]
\[ = \mathop {\lim }\limits_{{\rm{x}} \to - \infty } \frac{{{\rm{b}}{{\rm{x}}^{\rm{2}}}{\rm{ + 5}}}}{{\sqrt[3]{{{{\left( {{\rm{27}}{{\rm{x}}^{\rm{3}}}{\rm{ + b}}{{\rm{x}}^{\rm{2}}}{\rm{ + 5}}} \right)}^2}}} + 3{\rm{x}}.\sqrt[3]{{{\rm{27}}{{\rm{x}}^{\rm{3}}}{\rm{ + b}}{{\rm{x}}^{\rm{2}}}{\rm{ + 5}}}} + 9{{\rm{x}}^2}}}\]
\[ = \mathop {\lim }\limits_{{\rm{x}} \to - \infty } \frac{{{\rm{b + }}\frac{{\rm{5}}}{{{{\rm{x}}^{\rm{2}}}}}}}{{\sqrt[3]{{{{\left( {{\rm{27 + }}\frac{{\rm{b}}}{{\rm{x}}}{\rm{ + }}\frac{{\rm{5}}}{{{{\rm{x}}^{\rm{3}}}}}} \right)}^2}}} + 3.\sqrt[3]{{{\rm{27 + }}\frac{{\rm{b}}}{{\rm{x}}}{\rm{ + }}\frac{{\rm{5}}}{{{{\rm{x}}^{\rm{2}}}}}}} + 9}} = \frac{{\rm{b}}}{{{\rm{27}}}}\]
Do đó\[\frac{{\rm{a}}}{{\rm{6}}}{\rm{ + }}\frac{{\rm{b}}}{{{\rm{27}}}}{\rm{ = }}\frac{{\rm{7}}}{{{\rm{27}}}}\]
Áp dụng bất đẳng thức Cauchy cho 2 số dương, ta có :\[\frac{{\rm{a}}}{{\rm{6}}}{\rm{ + }}\frac{{\rm{b}}}{{{\rm{27}}}} \ge 2\sqrt {\frac{{\rm{a}}}{{\rm{6}}}{\rm{.}}\frac{{\rm{b}}}{{{\rm{27}}}}} \]
\[ \Rightarrow \frac{7}{{27}} \ge \frac{2}{{9\sqrt 2 }}\sqrt {{\rm{a}}{\rm{.b}}} \Rightarrow {\rm{ab}} \le \frac{{49}}{{18}}\]
Đẳng thức xảy ra khi\(\left\{ {\begin{array}{*{20}{c}}{\frac{{\rm{a}}}{{\rm{6}}}{\rm{ = }}\frac{{\rm{b}}}{{{\rm{2}}7}}}\\{\frac{{\rm{a}}}{{\rm{6}}} + \frac{{\rm{b}}}{{{\rm{2}}7}} = \frac{{\rm{7}}}{{{\rm{2}}7}}}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{{\rm{a}} = \frac{7}{9}}\\{{\rm{b}} = \frac{7}{2}}\end{array}} \right.\)
Vậy giá trị lớn nhất của ab bằng \[\frac{{49}}{{18}}\].
Đáp án cần chọn là: B
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Biết \[\mathop {\lim }\limits_{{\rm{x}} \to 1} \frac{{\sqrt {{{\rm{x}}^2} + {\rm{x}} + 2} - \sqrt[3]{{7{\rm{x}} + 1}}}}{{\sqrt 2 ({\rm{x}} - 1)}} = \frac{{{\rm{a}}\sqrt {\rm{2}} }}{{\rm{b}}}{\rm{ + c}}\] với \[{\rm{a, b, c}} \in \mathbb{Z}\] và \[\frac{{\rm{a}}}{{\rm{b}}}\] là phân số tối giản. Giá trị của a + b + c bằng:
Câu 2:
Biết giới hạn \[\mathop {\lim }\limits_{{\rm{x}} \to 2} \frac{{\sqrt {3{\rm{x}} + 3} - {\rm{m}}}}{{{\rm{x}} - 2}} = \frac{{\rm{a}}}{{\rm{b}}}\], m là số thực; a, b là các số nguyên và \[\frac{{\rm{a}}}{{\rm{b}}}\] tối giản. Tính a − b
Câu 3:
Cho hàm số \({\rm{f}}\left( {\rm{x}} \right) = \left\{ {\begin{array}{*{20}{c}}{{{\rm{x}}^2} - 3\,\,{\rm{khi}}\,\,{\rm{x}} \ge 2}\\{{\rm{x}} - 1\,\,{\rm{khi}}\,\,{\rm{x}} < 2}\end{array}} \right.\). Chọn kết quả đúng của \[\mathop {\lim }\limits_{{\rm{x}} \to 2} {\rm{f}}\left( {\rm{x}} \right)\]
Câu 4:
Tìm giới hạn \[{\rm{A}} = \mathop {\lim }\limits_{{\rm{x}} \to 1} \frac{{{{\rm{x}}^{\rm{n}}} - 1}}{{{{\rm{x}}^{\rm{m}}} - 1}},{\rm{m}},{\rm{n}} \in {\mathbb{N}^ * }\]:
Câu 5:
Cho đa thức P(x) thỏa mãn \[\mathop {\lim }\limits_{{\rm{x}} \to 3} \frac{{{\rm{P}}\left( {\rm{x}} \right) - 2}}{{{\rm{x}} - 3}} = 2\]. Tính \[\mathop {\lim }\limits_{{\rm{x}} \to 3} \frac{{{\rm{P}}\left( {\rm{x}} \right) - 2}}{{\left( {{{\rm{x}}^2} - 9} \right)\left( {\sqrt {{\rm{P}}\left( {\rm{x}} \right) + 2} + 1} \right)}}\]
Câu 6:
Giá trị của giới hạn \[\mathop {\lim }\limits_{{\rm{x}} \to 2} \sqrt {\frac{{\left( {{{\rm{x}}^2} + 3} \right){\rm{x}}}}{{{{\rm{x}}^3} - 1}}} \] bằng
Câu 7:
Cho \[\mathop {\lim }\limits_{{\rm{x}} \to 4} \frac{{{\rm{f(x)}} - 5}}{{{\rm{x}} - 4}} = 5\]. Tính giới hạn \[\mathop {\lim }\limits_{{\rm{x}} \to 4} \frac{{{\rm{f}}\left( {\rm{x}} \right) - 5}}{{\left( {\sqrt {\rm{x}} - 2} \right)\left( {\sqrt {6{\rm{f(x)}} + 6} + 4} \right)}}\]
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
38 câu trắc nghiệm Toán 11 Kết nối tri thức Lôgarit có đáp án
10 Bài tập Biến cố hợp. Biến cố giao (có lời giải)
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
20 câu trắc nghiệm Toán 11 Kết nối tri thức Mẫu số liệu ghép nhóm có đáp án
10 Bài tập Tính xác suất của biến cố hợp của hai biến cố bất kì bằng cách sử dụng công thức cộng xác suất và phương pháp tổ hợp (có lời giải)
100 câu trắc nghiệm Đạo hàm cơ bản (P1)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận