Đề kiểm tra Toán 11 Cánh diều Chương 6 có đáp án - Đề 02
30 người thi tuần này 4.6 96 lượt thi 11 câu hỏi 60 phút
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
🔥 Học sinh cũng đã học
Bộ 10 đề thi Cuối kì 2 Toán 11 Chân trời sáng tạo có đáp án - Đề 10
Bộ 10 đề thi Cuối kì 2 Toán 11 Chân trời sáng tạo có đáp án - Đề 8
Bộ 10 đề thi Cuối kì 2 Toán 11 Chân trời sáng tạo có đáp án - Đề 7
Bộ 10 đề thi Cuối kì 2 Toán 11 Chân trời sáng tạo có đáp án - Đề 6
Bộ 10 đề thi Cuối kì 2 Toán 11 Chân trời sáng tạo có đáp án - Đề 5
Bộ 10 đề thi Cuối kì 2 Toán 11 Chân trời sáng tạo có đáp án - Đề 4
Bộ 10 đề thi cuối kì 2 Toán 11 Chân trời sáng tạo có đáp án - Đề 2
Bộ 10 đề thi cuối kì 2 Toán 11 Chân trời sáng tạo có đáp án - Đề 1
Danh sách câu hỏi:
Câu 1
A. \(15\).
Lời giải
\({\log _a}\left( {{a^3}{b^4}} \right)\)\( = {\log _a}{a^3} + {\log _a}{b^4}\)\( = 3{\log _a}a + 4{\log _a}b\)\( = 3 + 4 \cdot 3 = 15\). Chọn A.
Câu 2
A. \({a^{\frac{{17}}{{12}}}}\).
Lời giải
\(\sqrt a \cdot \sqrt[4]{a} \cdot \sqrt[6]{{{a^4}}}\)\( = {a^{\frac{1}{2}}} \cdot {a^{\frac{1}{4}}} \cdot {a^{\frac{4}{6}}} = {a^{\frac{{17}}{{12}}}}\). Chọn A.
Câu 3
A. \(y = {\left( {\frac{2}{{\sqrt 3 }}} \right)^x}\).
Lời giải
Ta có \(0 < \frac{1}{\pi } < 1\) suy ra \(y = {\left( {\frac{1}{\pi }} \right)^x}\) nghịch biến trên \(\mathbb{R}\). Chọn B.
Câu 4
A. \(S = \left( {2; + \infty } \right)\).
Lời giải
\({\log _2}x > 2\)\( \Leftrightarrow \left\{ \begin{array}{l}x > 0\\x > 4\end{array} \right. \Leftrightarrow x > 4\).
Vậy tập nghiệm của bất phương trình là \(S = \left( {4; + \infty } \right)\). Chọn D.
Câu 5
A. \(\left( {0;16} \right)\).
Lời giải
Ta có \({2^{2x}} < {2^{x + 4}}\)\( \Leftrightarrow 2x < x + 4\)\( \Leftrightarrow x < 4\).
Vậy tập nghiệm của bất phương trình là \(S = \left( { - \infty ;4} \right)\). Chọn B.
Câu 6
A. \(y = {\log _4}\left( {4 - {x^2}} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
a) Hàm số \(f\left( x \right)\) nghịch biến trên tập hợp \(\mathbb{R}\).
b) Có 30 giá trị \(m\) nguyên dương để bất phương trình \(\left( {f\left( x \right) - {5^m}} \right)\left( {25f\left( x \right) - 1} \right) < 0\) có không quá 31 nghiệm nguyên.
c) \(f\left( {{{\log }_5}3} \right) = 3\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 8
a) Tập xác định của hàm số là \(D = \mathbb{R}\).
b) \(x = - 1\) là nghiệm của bất phương trình \(f\left( x \right) < 0\).
c) Phương trình \(f\left( {x - 2} \right) = {\log _5}\left( {2{x^2} - x + 7} \right)\) có nghiệm duy nhất.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
