Biết phương trình \(2{\log _2}x + 3{\log _x}2 = 7\) có hai nghiệm thực \({x_1} < {x_2}\). Tính giá trị của biểu thức \(T = {\left( {{x_1}} \right)^{{x_2}}}\).
Câu hỏi trong đề: Đề kiểm tra Toán 11 Cánh diều Chương 6 có đáp án !!
Quảng cáo
Trả lời:
Điều kiện: \(\left\{ \begin{array}{l}x > 0\\x \ne 1\end{array} \right.\).
Ta có \(2{\log _2}x + 3{\log _x}2 = 7\)\( \Leftrightarrow 2{\log _2}x + \frac{3}{{{{\log }_2}x}} = 7\)\( \Leftrightarrow 2\log _2^2x - 7{\log _2}x + 3 = 0\)
\( \Leftrightarrow \left[ \begin{array}{l}{\log _2}x = \frac{1}{2}\\{\log _2}x = 3\end{array} \right.\)\( \Leftrightarrow \left[ \begin{array}{l}x = \sqrt 2 \\x = 8\end{array} \right.\) (thỏa mãn).
Vì \({x_1} < {x_2}\) nên \({x_1} = \sqrt 2 ,{x_2} = 8\).
Vậy \(T = {\left( {{x_1}} \right)^{{x_2}}} = {\left( {\sqrt 2 } \right)^8} = 16\).
Trả lời: 16.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. \({a^{\frac{{17}}{{12}}}}\).
Lời giải
\(\sqrt a \cdot \sqrt[4]{a} \cdot \sqrt[6]{{{a^4}}}\)\( = {a^{\frac{1}{2}}} \cdot {a^{\frac{1}{4}}} \cdot {a^{\frac{4}{6}}} = {a^{\frac{{17}}{{12}}}}\). Chọn A.
Câu 2
A. \(\left( {0;16} \right)\).
Lời giải
Ta có \({2^{2x}} < {2^{x + 4}}\)\( \Leftrightarrow 2x < x + 4\)\( \Leftrightarrow x < 4\).
Vậy tập nghiệm của bất phương trình là \(S = \left( { - \infty ;4} \right)\). Chọn B.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. \(S = \left( {2; + \infty } \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \(y = {\log _4}\left( {4 - {x^2}} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \(y = {\left( {\frac{2}{{\sqrt 3 }}} \right)^x}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.