Câu hỏi:

27/11/2025 10 Lưu

Phần 2. Trắc nghiệm đúng sai

Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.

Cho hàm số \(f\left( x \right) = {5^x}\).

a) Hàm số \(f\left( x \right)\) nghịch biến trên tập hợp \(\mathbb{R}\).

Đúng
Sai

b) Có 30 giá trị \(m\) nguyên dương để bất phương trình \(\left( {f\left( x \right) - {5^m}} \right)\left( {25f\left( x \right) - 1} \right) < 0\) có không quá 31 nghiệm nguyên.

Đúng
Sai

c) \(f\left( {{{\log }_5}3} \right) = 3\).

Đúng
Sai
d) Biết \(f\left( x \right) + f\left( { - x} \right) = 6\). Khi đó \(f\left( {2x} \right) + f\left( { - 2x} \right) = 36\).
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Hàm số \(f\left( x \right)\) đồng biến trên tập hợp \(\mathbb{R}\).

b) \(\left( {f\left( x \right) - {5^m}} \right)\left( {25f\left( x \right) - 1} \right) < 0\)\( \Leftrightarrow \left( {{5^x} - {5^m}} \right)\left( {25 \cdot {5^x} - 1} \right) < 0\).

TH1: \(\left\{ \begin{array}{l}{5^x} - {5^m} > 0\\25 \cdot {5^x} - 1 < 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{5^x} > {5^m}\\{5^x} < {5^{ - 2}}\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x > m\\x <  - 2\end{array} \right. \Leftrightarrow m < x <  - 2\) (loại).

TH2: \(\left\{ \begin{array}{l}{5^x} - {5^m} < 0\\25 \cdot {5^x} - 1 > 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{5^x} < {5^m}\\{5^x} > {5^{ - 2}}\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x < m\\x >  - 2\end{array} \right. \Leftrightarrow  - 2 < x < m\).

Số nghiệm nguyên của bất phương trình là \(m + 1\).

Để bất phương trình có không quá 31 nghiệm nguyên thì \(m + 1 \le 31 \Leftrightarrow m \le 30\).

Vậy có 30 giá trị nguyên dương thỏa mãn yêu cầu đề bài.

c) \(f\left( {{{\log }_5}3} \right) = {5^{{{\log }_5}3}} = 3\).

d) Ta có \(f\left( x \right) + f\left( { - x} \right) = 6\)\( \Leftrightarrow {5^x} + {5^{ - x}} = 6\).

Ta có \(f\left( {2x} \right) + f\left( { - 2x} \right)\)\( = {5^{2x}} + {5^{ - 2x}}\)\( = {\left( {{5^x} + {5^{ - x}}} \right)^2} - 2 = 36 - 2 = 34\).

Đáp án: a) Sai;     b) Đúng;    c) Đúng;    d) Sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 2

A. \({a^{\frac{{17}}{{12}}}}\). 

B. \({a^{\frac{7}{6}}}\).   
C. \({a^{\frac{7}{{12}}}}\).      
D. \({a^{\frac{{17}}{6}}}\).

Lời giải

\(\sqrt a  \cdot \sqrt[4]{a} \cdot \sqrt[6]{{{a^4}}}\)\( = {a^{\frac{1}{2}}} \cdot {a^{\frac{1}{4}}} \cdot {a^{\frac{4}{6}}} = {a^{\frac{{17}}{{12}}}}\). Chọn A.

Câu 3

A. \(\left( {0;16} \right)\). 

B. \(\left( { - \infty ;4} \right)\). 
C. \(\left( {0;4} \right)\). 
D. \(\left( {4; + \infty } \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(S = \left( {2; + \infty } \right)\). 

B. \(S = \left( {0;2} \right)\).
C. \(S = \left( {0;4} \right)\).
D. \(S = \left( {4; + \infty } \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(y = {\log _4}\left( {4 - {x^2}} \right)\).  

B. \(y = {\log _2}\left( {{x^2} - 1} \right)\).  
C. \(y = {\log _3}\left( {x + 1} \right)\).
D. \(y = {\log _2}\left( {{x^2} + 2} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(y = {\left( {\frac{2}{{\sqrt 3 }}} \right)^x}\).    

B. \(y = {\left( {\frac{1}{\pi }} \right)^x}\). 
C. \(y = {\left( {\frac{e}{2}} \right)^x}\). 
D. \(y = {\left( {\frac{\pi }{2}} \right)^x}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP