Câu hỏi:

27/11/2025 27 Lưu

Tập nghiệm của bất phương trình \({2^{2x}} < {2^{x + 4}}\) là

A. \(\left( {0;16} \right)\). 

B. \(\left( { - \infty ;4} \right)\). 
C. \(\left( {0;4} \right)\). 
D. \(\left( {4; + \infty } \right)\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có \({2^{2x}} < {2^{x + 4}}\)\( \Leftrightarrow 2x < x + 4\)\( \Leftrightarrow x < 4\).

Vậy tập nghiệm của bất phương trình là \(S = \left( { - \infty ;4} \right)\). Chọn B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

\({\log _a}\left( {{a^3}{b^4}} \right)\)\( = {\log _a}{a^3} + {\log _a}{b^4}\)\( = 3{\log _a}a + 4{\log _a}b\)\( = 3 + 4 \cdot 3 = 15\). Chọn A.

Câu 3

A. \(y = {\log _4}\left( {4 - {x^2}} \right)\).  

B. \(y = {\log _2}\left( {{x^2} - 1} \right)\).  
C. \(y = {\log _3}\left( {x + 1} \right)\).
D. \(y = {\log _2}\left( {{x^2} + 2} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(y = {\left( {\frac{2}{{\sqrt 3 }}} \right)^x}\).    

B. \(y = {\left( {\frac{1}{\pi }} \right)^x}\). 
C. \(y = {\left( {\frac{e}{2}} \right)^x}\). 
D. \(y = {\left( {\frac{\pi }{2}} \right)^x}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

a) Hàm số \(f\left( x \right)\) nghịch biến trên tập hợp \(\mathbb{R}\).

Đúng
Sai

b) Có 30 giá trị \(m\) nguyên dương để bất phương trình \(\left( {f\left( x \right) - {5^m}} \right)\left( {25f\left( x \right) - 1} \right) < 0\) có không quá 31 nghiệm nguyên.

Đúng
Sai

c) \(f\left( {{{\log }_5}3} \right) = 3\).

Đúng
Sai
d) Biết \(f\left( x \right) + f\left( { - x} \right) = 6\). Khi đó \(f\left( {2x} \right) + f\left( { - 2x} \right) = 36\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \({a^{\frac{{17}}{{12}}}}\). 

B. \({a^{\frac{7}{6}}}\).   
C. \({a^{\frac{7}{{12}}}}\).      
D. \({a^{\frac{{17}}{6}}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP