Cho hình hộp \(ABCD.A'B'C'D'\). Hai đoạn thẳng \(AC'\) và \(A'C\) cắt nhau tại \(I\). Tính \(\frac{{AI}}{{AC'}}\).
Cho hình hộp \(ABCD.A'B'C'D'\). Hai đoạn thẳng \(AC'\) và \(A'C\) cắt nhau tại \(I\). Tính \(\frac{{AI}}{{AC'}}\).
Quảng cáo
Trả lời:

Do \(ABCD.A'B'C'D'\) là hình hộp nên \(AA'//CC'\) và \(AA' = CC'\). Suy ra \(ACC'A'\) là hình bình hành.
Do đó \(I\) là trung điểm của \(AC'\). Do đó \(\frac{{AI}}{{AC'}} = \frac{1}{2} = 0,5\).
Trả lời: 0,5.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có đồ thị hàm số \(y = \cos x\)

Dựa vào đồ thị hàm số \(y = \cos x\) trên đoạn \(\left[ { - \pi ;\pi } \right]\) ta thấy đường thẳng \(y = \frac{1}{2}\) cắt đồ thị hàm số \(y = \cos x\) tại hai điểm.
Do đó có 2 giá trị \(x \in \left[ { - \pi ;\pi } \right]\) để hàm số \(y = \cos x\)nhận giá trị bằng \(\frac{1}{2}\).
Trả lời: 2.
Lời giải
Ta có \({u_4} = {u_1}.{q^3}\)\( \Leftrightarrow 54 = {u_1}{.3^3} \Leftrightarrow {u_1} = 2\).
Trả lời: 2.
Câu 3
C. Tồn tại một mặt phẳng chứa \(AC\) và \(BD\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành có tâm là \(O\).
a) Điểm \(O\) không thuộc mặt phẳng \(\left( {SBD} \right)\).
b) \(SA\) và \(BD\) là hai đường thẳng chéo nhau.
c) Giao tuyến của hai mặt phẳng \(\left( {SAD} \right)\) và \(\left( {SBC} \right)\) là đường thẳng đi qua \(S\) và song song với \(AD\).
d) Gọi \(I\) là trung điểm của SB. Khi đó \(OI//\left( {SCD} \right)\).
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành có tâm là \(O\).
a) Điểm \(O\) không thuộc mặt phẳng \(\left( {SBD} \right)\).
b) \(SA\) và \(BD\) là hai đường thẳng chéo nhau.
c) Giao tuyến của hai mặt phẳng \(\left( {SAD} \right)\) và \(\left( {SBC} \right)\) là đường thẳng đi qua \(S\) và song song với \(AD\).
d) Gọi \(I\) là trung điểm của SB. Khi đó \(OI//\left( {SCD} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
