Câu hỏi:

18/10/2025 41 Lưu

Cho hình tứ diện đều \(ABCD\) có cạnh bằng 12. Gọi \(M,N\) lần lượt là trung điểm của cạnh \(AB\)\(CD\). Gọi \(P\) là trung điểm đoạn thẳng \(CM\). Giao điểm \(I\) của đường thẳng \(DP\) và mặt phẳng \(\left( {ABN} \right)\) cách điểm \(D\) một khoảng bằng bao nhiêu (làm tròn kết quả đến hàng phần trăm)?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Trả lời: 6,63

Cho hình tứ diện đều \(ABCD\) có cạnh bằng 1 (ảnh 1)

Trong mặt phẳng \(\left( {DMC} \right)\), gọi \(I\) là giao điểm của \(MN\)\(DP\).

Khi đó \(I \in MN \subset \left( {ABN} \right) \Rightarrow I \in \left( {ABN} \right)\).

Vậy \(I\) là giao điểm của \(DP\)\(\left( {ABN} \right)\).

Tam giác \(DMC\)\(MN\)\(DP\) là hai đường trung tuyến nên giao điểm \(I\) là trọng tâm \(\Delta DMC.\)

Tam giác \(ABD\) đều cạnh bằng 12 và có \(DM\) là đường cao nên \(DM = 12.\frac{{\sqrt 3 }}{2} = 6\sqrt 3 \).

Tương tự ta có \(CM = 6\sqrt 3 \).

Do đó tam giác \(DMC\) cân tại \(M\). Suy ra \(MN\) cũng là đường cao của tam giác \(DMC\) hay \(MN \bot CD\).

Ta có \(DM = 6\sqrt 3 ,DN = \frac{1}{2}DC = 6\) nên \(MN = \sqrt {D{M^2} - D{N^2}} = 6\sqrt 2 \).

Khi đó \(IN = \frac{1}{3}MN = 2\sqrt 2 .\)

Tam giác \(DNI\) vuông tại \(N\) nên \(DI = \sqrt {D{N^2} + I{N^2}} = 2\sqrt {11} \).

Vậy \(I\) cách điểm \(D\) một khoảng bằng \(2\sqrt {11} \approx 6,63\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đ, b) Đ, c) Đ, d) S

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là h (ảnh 1)

a) Vì \(\left. \begin{array}{l}O \in \left( {OMN} \right)\\O = AC \cap BD\end{array} \right\} \Rightarrow \left\{ \begin{array}{l}O \in \left( {OMN} \right)\\O \in \left( {ABCD} \right)\end{array} \right. \Rightarrow O \in \left( {OMN} \right) \cap \left( {ABCD} \right)\).

b) Vì \(M,N\) lần lượt là trung điểm của \(SA\)\(SD\) nên \(MN//AD\).

\(ABCD\) là hình bình hành nên \(AD//BC\).

Vậy \(\left\{ \begin{array}{l}MN//AD\\AD//BC\end{array} \right. \Rightarrow MN//BC\).

c) Vì \(M,O\) lần lượt là trung điểm của \(SA\)\(AC\) nên \(MO//SC\).

Vậy \(\left\{ \begin{array}{l}OM//SC\\SC \subset \left( {SBC} \right)\end{array} \right. \Rightarrow OM//\left( {SBC} \right)\).

d) Vì \(\left\{ \begin{array}{l}MN//BC\\BC \subset \left( {SBC} \right)\end{array} \right. \Rightarrow MN//\left( {SBC} \right)\).

Vậy \(\left\{ \begin{array}{l}MN//\left( {SBC} \right)\\OM//\left( {SBC} \right)\\MN \cap OM = M\\MN,OM \subset \left( {OMN} \right)\end{array} \right. \Rightarrow \left( {OMN} \right)//\left( {SBC} \right)\).

Do đó hai mặt phẳng \(\left( {OMN} \right)\)\(\left( {SBC} \right)\) không có đường thẳng giao tuyến.

Lời giải

Trả lời: 1,3

Cho hình chóp \(S.ABCD\) có đáy là hình bình hành \(A (ảnh 1)

Do mặt phẳng \(\left( P \right)//\left( {SCD} \right)\)\(\left( {ABCD} \right) \cap \left( {SCD} \right) = CD\)\( \Rightarrow \left( {ABCD} \right) \cap \left( P \right) = MN\) đi qua \(O\) và song song với \(CD\) (với \(M \in AD,N \in BC\)).

Tương tự ta có: \(\left( {SAD} \right) \cap \left( P \right) = MF//SD\) (với \(F \in SA\)); \(\left( {SBC} \right) \cap \left( P \right) = NE//SC\) (với \(E \in SB\)).

Vậy hình tạo bởi mặt phẳng \(\left( P \right)\) và các mặt của hình chóp \(S.ABCD\) là tứ giác \(MNEF\).

Ta có \(MN\) đi qua \(O\) và song song với \(CD\) nên \(M,N\) lần lượt là trung điểm của \(AD,BC\).

Suy ra \(E,F\) lần lượt là trung điểm \(SB,SA\).

Gọi \(I,K\) lần lượt là trung điểm \(SC,SD\). Khi đó ta có:

\(IK//EF;IK = EF;IC//EN;IC = EN;\)\(KD//FM,KD = FN;MN//CD;MN = CD\).

Do đó \({S_{MNEF}} = {S_{DCIK}} = \frac{3}{4}{S_{SCD}} = \frac{3}{4}.\frac{{\sqrt 3 }}{4}{.2^2} = \frac{{3\sqrt 3 }}{4} \approx 1,3\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\frac{{\sqrt 3 }}{3}\).                       
B. \( - \frac{{\sqrt 3 }}{3}\).                         
C. \(\sqrt 3 \).          
D. \( - \sqrt 3 \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\pi \).                
B. \(2\pi \).              
C. \(3\pi \). 
D. \(4\pi \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP