Hai chiếc flycam được điều khiển cùng bay lên tại một địa điểm. Sau một thời gian bay, chiếc flycam thứ nhất nằm cách điểm xuất phát 3 m về phía nam và 2 m về phía đông, đồng thời cách mặt đất 5 m. Chiếc flycam thứ hai nằm cách điểm xuất phát 6 m về phía bắc và 6 m về phía tây, đồng thời cách mặt đất 5 m. Chọn hệ trục tọa độ \(Oxyz\) với gốc O đặt tại điểm xuất phát của hai chiếc flycam, mặt phẳng \(\left( {Oxy} \right)\) trùng với mặt đất (coi như phẳng) có trục \(Ox\) hướng về phía nam, trục \(Oy\) hướng về phía đông và trục \(Oz\) hướng thẳng lên trời (đơn vị đo mỗi trục là mét). Trên mặt đất, người ta xác định được một vị trí sao cho tổng khoảng cách từ vị trí đó tới hai chiếc flycam ngắn nhất. Hỏi khoảng cách từ vị trí đó đến điểm xuất phát là bao nhiêu mét?
Quảng cáo
Trả lời:

Chiếc flycam thứ nhất và thứ hai ở vị trí A, B.
Ta có \(A\left( {3;2;5} \right),B\left( { - 6; - 6;5} \right)\).
Gọi \(C\)là điểm đối xứng của \(A\) qua mặt phẳng \(\left( {Oxy} \right)\). Khi đó \(C\left( {3;2; - 5} \right)\).
Gọi \(I = BC \cap \left( {Oxy} \right)\) là vị trí trên mặt đất sao cho tổng khoảng cách từ vị trí đó tới hai chiếc flycam ngắn nhất.
Ta có \(IA + IB = IC + IB \ge BC\) nên \(IA + IB\) ngắn nhất khi ba điểm \(B,C,I\) thẳng hàng.
Ta có \(\overrightarrow {BC} = \left( {9;8; - 10} \right)\).
Vì \(I \in \left( {Oxy} \right) \Rightarrow I\left( {x;y;0} \right) \Rightarrow \overrightarrow {BI} = \left( {x + 6;y + 6; - 5} \right)\).
Ba điểm \(B,C,I\) thẳng hàng nên \(\frac{{x + 6}}{9} = \frac{{y + 6}}{8} = \frac{1}{2}\)\( \Rightarrow \left\{ \begin{array}{l}x = - \frac{3}{2}\\y = - 2\end{array} \right.\) \( \Rightarrow I\left( { - \frac{3}{2}; - 2;0} \right)\).
Suy ra \(IO = 2,5\) m.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chiều cao của chiếc hộp khi gập tấm nhôm là \(x\) cm.
Kích thước hai đáy của chiếc hộp là \(30 - 2x\) cm.
Ta có \(\left\{ \begin{array}{l}x > 0\\30 - 2x > 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x > 0\\x < 15\end{array} \right. \Leftrightarrow 0 < x < 15\).
Thể tích chiếc hộp \(V\left( x \right) = x{\left( {30 - 2x} \right)^2} = 4{x^3} - 120{x^2} + 900x\).
Có \(V'\left( x \right) = 12{x^2} - 240x + 900\); \(V'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 5\\x = 15\end{array} \right.\).
Bài toán trở thành tìm \(x\left( {0 < x < 15} \right)\) sao cho \(V\left( x \right)\) là lớn nhất.
Vậy cần cắt bỏ ở bốn góc của tấm nhôm đó các hình vuông bằng nhau có cạnh là 5 cm để chiếc hộp tạo thành có thể tích lớn nhất.
Lời giải
Giả sử \(\overrightarrow P \) là trọng lượng của chiếc đèn.
Do chiếc đèn ở vị trí cân bằng nên \(\overrightarrow P = \overrightarrow {{F_1}} + \overrightarrow {{F_2}} + \overrightarrow {{F_3}} \).
Ta có \({\left( {\overrightarrow P } \right)^2} = {\left( {\overrightarrow {{F_1}} + \overrightarrow {{F_2}} + \overrightarrow {{F_3}} } \right)^2} = {\left( {\overrightarrow {{F_1}} } \right)^2} + {\left( {\overrightarrow {{F_2}} } \right)^2} + {\left( {\overrightarrow {{F_3}} } \right)^2} + 2\overrightarrow {{F_1}} \overrightarrow {{F_2}} + 2\overrightarrow {{F_2}} \overrightarrow {{F_3}} + 2\overrightarrow {{F_1}} \overrightarrow {{F_3}} \).
Mà \(\overrightarrow {{F_1}} \overrightarrow {{F_2}} = \overrightarrow {{F_2}} \overrightarrow {{F_3}} = \overrightarrow {{F_1}} \overrightarrow {{F_3}} = 0\) nên \(\left| {\overrightarrow P } \right| = \sqrt {{{\left| {\overrightarrow {{F_1}} } \right|}^2} + {{\left| {\overrightarrow {{F_2}} } \right|}^2} + {{\left| {\overrightarrow {{F_3}} } \right|}^2}} = 20\sqrt 3 \) N.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
\(x = 2\).
\(\left( { - 2;1} \right)\).
\(\left( {2; - 3} \right)\).
\(\left( { - 3;2} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.