Biết rằng giới hạn \(\mathop {\lim }\limits_{x \to 0} \frac{{\sqrt {x + 9} + \sqrt {x + 16} - 7}}{x} = \mathop {\lim }\limits_{x \to 0} \left[ {\frac{a}{{\sqrt {x + 9} + b}} + \frac{c}{{\sqrt {x + 16} + d}}} \right]\) với \(a;b;c;d\) là các số nguyên dương. Tính \(a + b + c + d\).
Biết rằng giới hạn \(\mathop {\lim }\limits_{x \to 0} \frac{{\sqrt {x + 9} + \sqrt {x + 16} - 7}}{x} = \mathop {\lim }\limits_{x \to 0} \left[ {\frac{a}{{\sqrt {x + 9} + b}} + \frac{c}{{\sqrt {x + 16} + d}}} \right]\) với \(a;b;c;d\) là các số nguyên dương. Tính \(a + b + c + d\).
Quảng cáo
Trả lời:
Trả lời: 9
\(\mathop {\lim }\limits_{x \to 0} \frac{{\sqrt {x + 9} + \sqrt {x + 16} - 7}}{x} = \mathop {\lim }\limits_{x \to 0} \left( {\frac{{\sqrt {x + 9} - 3}}{x} + \frac{{\sqrt {x + 16} - 4}}{x}} \right)\)
\[ = \mathop {\lim }\limits_{x \to 0} \left( {\frac{x}{{x\left( {\sqrt {x + 9} + 3} \right)}} + \frac{x}{{x\left( {\sqrt {x + 16} + 4} \right)}}} \right)\]\[ = \mathop {\lim }\limits_{x \to 0} \left( {\frac{1}{{\sqrt {x + 9} + 3}} + \frac{1}{{\sqrt {x + 16} + 4}}} \right)\].
Do đó \(a = 1;b = 3;c = 1;d = 4\). Vậy \(a + b + c + d = 9\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là: A
\({u_4} = \frac{4}{{{2^4}}} = \frac{1}{4}\).
Lời giải
a) Đ, b) Đ, c) Đ, d) S

a) Vì \(\left. \begin{array}{l}O \in \left( {OMN} \right)\\O = AC \cap BD\end{array} \right\} \Rightarrow \left\{ \begin{array}{l}O \in \left( {OMN} \right)\\O \in \left( {ABCD} \right)\end{array} \right. \Rightarrow O \in \left( {OMN} \right) \cap \left( {ABCD} \right)\).
b) Vì \(M,N\) lần lượt là trung điểm của \(SA\) và \(SD\) nên \(MN//AD\).
Mà \(ABCD\) là hình bình hành nên \(AD//BC\).
Vậy \(\left\{ \begin{array}{l}MN//AD\\AD//BC\end{array} \right. \Rightarrow MN//BC\).
c) Vì \(M,O\) lần lượt là trung điểm của \(SA\) và \(AC\) nên \(MO//SC\).
Vậy \(\left\{ \begin{array}{l}OM//SC\\SC \subset \left( {SBC} \right)\end{array} \right. \Rightarrow OM//\left( {SBC} \right)\).
d) Vì \(\left\{ \begin{array}{l}MN//BC\\BC \subset \left( {SBC} \right)\end{array} \right. \Rightarrow MN//\left( {SBC} \right)\).
Vậy \(\left\{ \begin{array}{l}MN//\left( {SBC} \right)\\OM//\left( {SBC} \right)\\MN \cap OM = M\\MN,OM \subset \left( {OMN} \right)\end{array} \right. \Rightarrow \left( {OMN} \right)//\left( {SBC} \right)\).
Do đó hai mặt phẳng \(\left( {OMN} \right)\) và \(\left( {SBC} \right)\) không có đường thẳng giao tuyến.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
