Hai chiếc flycam được điều khiển cùng bay lên tại một địa điểm. Sau một thời gian bay, chiếc flycam thứ nhất nằm cách điểm xuất phát 3 m về phía nam và 2 m về phía đông, đồng thời cách mặt đất 5 m. Chiếc flycam thứ hai nằm cách điểm xuất phát 6 m về phía bắc và 6 m về phía tây, đồng thời cách mặt đất 5 m. Chọn hệ trục tọa độ \(Oxyz\) với gốc O đặt tại điểm xuất phát của hai chiếc flycam, mặt phẳng \(\left( {Oxy} \right)\) trùng với mặt đất (coi như phẳng) có trục \(Ox\) hướng về phía nam, trục \(Oy\) hướng về phía đông và trục \(Oz\) hướng thẳng lên trời (đơn vị đo mỗi trục là mét). Trên mặt đất, người ta xác định được một vị trí sao cho tổng khoảng cách từ vị trí đó tới hai chiếc flycam ngắn nhất. Hỏi khoảng cách từ vị trí đó đến điểm xuất phát là bao nhiêu mét?
Quảng cáo
Trả lời:

Chiếc flycam thứ nhất và thứ hai ở vị trí A, B.
Ta có \(A\left( {3;2;5} \right),B\left( { - 6; - 6;5} \right)\).
Gọi \(C\)là điểm đối xứng của \(A\) qua mặt phẳng \(\left( {Oxy} \right)\). Khi đó \(C\left( {3;2; - 5} \right)\).
Gọi \(I = BC \cap \left( {Oxy} \right)\) là vị trí trên mặt đất sao cho tổng khoảng cách từ vị trí đó tới hai chiếc flycam ngắn nhất.
Ta có \(IA + IB = IC + IB \ge BC\) nên \(IA + IB\) ngắn nhất khi ba điểm \(B,C,I\) thẳng hàng.
Ta có \(\overrightarrow {BC} = \left( {9;8; - 10} \right)\).
Vì \(I \in \left( {Oxy} \right) \Rightarrow I\left( {x;y;0} \right) \Rightarrow \overrightarrow {BI} = \left( {x + 6;y + 6; - 5} \right)\).
Ba điểm \(B,C,I\) thẳng hàng nên \(\frac{{x + 6}}{9} = \frac{{y + 6}}{8} = \frac{1}{2}\)\( \Rightarrow \left\{ \begin{array}{l}x = - \frac{3}{2}\\y = - 2\end{array} \right.\) \( \Rightarrow I\left( { - \frac{3}{2}; - 2;0} \right)\).
Suy ra \(IO = 2,5\) m.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Giả sử \(\overrightarrow P \) là trọng lượng của chiếc đèn.
Do chiếc đèn ở vị trí cân bằng nên \(\overrightarrow P = \overrightarrow {{F_1}} + \overrightarrow {{F_2}} + \overrightarrow {{F_3}} \).
Ta có \({\left( {\overrightarrow P } \right)^2} = {\left( {\overrightarrow {{F_1}} + \overrightarrow {{F_2}} + \overrightarrow {{F_3}} } \right)^2} = {\left( {\overrightarrow {{F_1}} } \right)^2} + {\left( {\overrightarrow {{F_2}} } \right)^2} + {\left( {\overrightarrow {{F_3}} } \right)^2} + 2\overrightarrow {{F_1}} \overrightarrow {{F_2}} + 2\overrightarrow {{F_2}} \overrightarrow {{F_3}} + 2\overrightarrow {{F_1}} \overrightarrow {{F_3}} \).
Mà \(\overrightarrow {{F_1}} \overrightarrow {{F_2}} = \overrightarrow {{F_2}} \overrightarrow {{F_3}} = \overrightarrow {{F_1}} \overrightarrow {{F_3}} = 0\) nên \(\left| {\overrightarrow P } \right| = \sqrt {{{\left| {\overrightarrow {{F_1}} } \right|}^2} + {{\left| {\overrightarrow {{F_2}} } \right|}^2} + {{\left| {\overrightarrow {{F_3}} } \right|}^2}} = 20\sqrt 3 \) N.
Câu 2
\(\overrightarrow {BD} \).
\(\overrightarrow {DB'} \).
\(\overrightarrow {BD'} \).
\(\overrightarrow {DB} \).
Lời giải
\(\overrightarrow {DA} + \overrightarrow {DC} + \overrightarrow {DD'} = \overrightarrow {DB'} \) (quy tắc hình hộp). C họn B.
Câu 3
\(ac > 0\).
\(cd > 0\).
\(ab > 0\).
\(ad > bc\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.