Câu hỏi:

20/10/2025 311 Lưu

Cho hàm số \(y = f\left( x \right)\) xác định và liên tục trên \(\mathbb{R}\) có đồ thị bên dưới. Gọi \(M\) và \(m\) lần lượt là giá trị lớn nhất và nhỏ nhất của hàm số đã cho trên đoạn \(\left[ {1;3} \right]\). Giá trị của \(M + m\) bằng

index_html_f39be1ba25f87623.png

\(4\).

\( - 6\).

\( - 2\).

\( - 4\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có \(M = \mathop {\max }\limits_{\left[ {1;3} \right]} f\left( x \right) = f\left( 2 \right) = 0;m = \mathop {\min }\limits_{\left[ {1;3} \right]} f\left( x \right) = f\left( 3 \right) = - 4\).

Suy ra \(M + m = - 4\). Chọn D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \(y = \frac{{{x^2} + 3x + 2}}{{x - 3}} = x + 6 + \frac{{20}}{{x - 3}}\).

Ta có \(\mathop {\lim }\limits_{x \to + \infty } \left[ {y - \left( {x + 6} \right)} \right] = \mathop {\lim }\limits_{x \to + \infty } \frac{{20}}{{x - 3}} = 0\); \(\mathop {\lim }\limits_{x \to - \infty } \left[ {y - \left( {x + 6} \right)} \right] = \mathop {\lim }\limits_{x \to - \infty } \frac{{20}}{{x - 3}} = 0\).

Do đó \(y = x + 6\) là tiệm cận xiên của đồ thị hàm số.

Suy ra \(g\left( { - 2} \right) = - 2 + 6 = 4\).

Trả lời: 4.

Câu 2

Đường thẳng \(y = 2\) là tiệm cận ngang của \(\left( C \right)\).

Đường thẳng \(y = 1\) là tiệm cận ngang của \(\left( C \right)\).

Đường thẳng \(x = 2\) là tiệm cận ngang của \(\left( C \right)\).

Đường thẳng \(x = 2\) là tiệm cận đứng của \(\left( C \right)\).

Lời giải

\(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = 2;\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = 2\) \( \Rightarrow y = 2\) là tiệm cận ngang của đồ thị hàm số. Chọn A.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP