Câu hỏi:

20/10/2025 13 Lưu

Để thiết kế một bể cá hình hộp chữ nhật, không có nắp, có độ dài một cạnh ở đáy bằng 80 cm, thể tích 16000 cm3, người thợ dùng loại kính để sử dụng mặt bên có giá thành 80000 đồng/m2 và loại kính để làm mặt đáy có giá thành 100000 đồng/m2. Chi phí thấp nhất để hoàn thành bể cá là bao nhiêu nghìn đồng?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có 80000 đồng/m2 = 8 đồng/cm2; 100000 đồng/m2 = 10 đồng/cm2.

Gọi \(x\) (cm) là độ dài của một cạnh đáy còn lại của hình hộp, \(h\) (cm) là chiều cao của hình hộp ( \(x > 0,h > 0\)).

Thể tích của khối hộp \(V = x.80.h = 16000 \Rightarrow h = \frac{{16000}}{{80x}} = \frac{{200}}{x}\).

Do đó chi phí làm bể cá là

\(f\left( x \right) = 80x.10 + \left( {2.80.\frac{{200}}{x} + 2x.\frac{{200}}{x}} \right).8 = 800x + \frac{{256000}}{x} + 3200\) đồng.

Yêu cầu bài toán trở thành tìm giá trị nhỏ nhất của hàm số \(f\left( x \right) = 800x + \frac{{256000}}{x} + 3200\) trên \(\left( {0; + \infty } \right)\).

Ta có \(f'\left( x \right) = 800 - \frac{{256000}}{{{x^2}}} = 0 \Leftrightarrow x = 8\sqrt 5 \) vì \(x \in \left( {0; + \infty } \right)\)

Bảng biến thiên

index_html_53167d85e8d9c0ce.png

Vậy chi phí ít nhất để làm bể cá như yêu cầu đề bài khoảng 32 nghìn đồng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Đường thẳng \(y = 2\) là tiệm cận ngang của \(\left( C \right)\).

Đường thẳng \(y = 1\) là tiệm cận ngang của \(\left( C \right)\).

Đường thẳng \(x = 2\) là tiệm cận ngang của \(\left( C \right)\).

Đường thẳng \(x = 2\) là tiệm cận đứng của \(\left( C \right)\).

Lời giải

\(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = 2;\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = 2\) \( \Rightarrow y = 2\) là tiệm cận ngang của đồ thị hàm số. Chọn A.

Câu 2

\(\left( {0;2} \right)\).

\(\left( {1; + \infty } \right)\).

\(\left( { - \infty ;1} \right)\).

\(\left( { - 2;1} \right)\).

Lời giải

Dựa vào đồ thị hàm số ta có hàm số đồng biến trên khoảng \(\left( {1; + \infty } \right)\). Chọn B.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP