Một người quản lí ở một trang trại nuôi cá xác định rằng: Sau \(t\) tháng kể từ khi thả 300 con cá X với \(0 \le t \le 10\) thì khối lượng trung bình \(m\left( t \right)\) tính theo kg của một con cá X ước tính là \(m\left( t \right) = 0,45\left( {0,2 + \frac{{141}}{{155}}t - 0,05{t^2}} \right)\). Người này cũng nhận định tỉ lệ giữa số lượng cá X còn sống trong ao so với số lượng cá X thả ban đầu sau \(t\) tháng kể từ ngày thả là \(p\left( t \right) = \frac{{31}}{{31 + t}}\). Biết rằng sản lượng cá X tại một thời điểm được tính bằng tổng khối lượng của các con cá \(X\) đã thả còn sống trong ao lúc đó. Hỏi với những nhận định trên của người quản lý thì dự kiến trong tối đa 10 tháng nuôi, sản lượng cá X lớn nhất có thể đạt được là bao nhiêu?
Quảng cáo
Trả lời:

Số cá còn sống trong ao lúc đó là \(\frac{{31}}{{31 + t}}.300\) (con).
Sản lượng cá X tại thời điểm đó là \(f\left( t \right) = \frac{{31}}{{31 + t}}.300.0,45\left( {0,2 + \frac{{141}}{{155}}t - 0,05{t^2}} \right)\)\( = 4185.\frac{{0,2 + \frac{{141}}{{155}}t - 0,05{t^2}}}{{31 + t}}\).
Ta có \(f'\left( t \right) = 4185.\left[ {\frac{{\left( {\frac{{141}}{{155}} - 0,1t} \right)\left( {31 + t} \right) - \left( {0,2 + \frac{{141}}{{155}}t - 0,05{t^2}} \right)}}{{{{\left( {31 + t} \right)}^2}}}} \right]\)\( = 4185.\frac{{ - 0,05{t^2} - 3,1t + 28}}{{{{\left( {31 + t} \right)}^2}}}\);
Có \(f'\left( t \right) = 0 \Leftrightarrow - 0,05{t^2} - 3,1t + 28 = 0 \Leftrightarrow t = 8\) vì \(0 \le t \le 8\).
Có \(f\left( 0 \right) = 27;f\left( 8 \right) = 459;f\left( {10} \right) \approx 439\).
Vậy sản lượng lớn nhất có thể đạt được là 459 kg.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có \(\overrightarrow {BG} .\overrightarrow {AC} = \left( {\overrightarrow {AG} - \overrightarrow {AB} } \right).\overrightarrow {AC} = \overrightarrow {AG} .\overrightarrow {AC} - \overrightarrow {AB} .\overrightarrow {AC} \)\( = \left| {\overrightarrow {AG} } \right|.\left| {\overrightarrow {AC} } \right|.\cos \left( {\overrightarrow {AG} ,\overrightarrow {AC} } \right) - \left| {\overrightarrow {AB} } \right|.\left| {\overrightarrow {AC} } \right|.\cos \left( {\overrightarrow {AB} ,\overrightarrow {AC} } \right)\)
\( = \frac{1}{2}\left| {\overrightarrow {AM} } \right|.\left| {\overrightarrow {AC} } \right|.\cos 30^\circ - \left| {\overrightarrow {AB} } \right|.\left| {\overrightarrow {AC} } \right|.\cos 60^\circ \)\( = \frac{1}{2}.\frac{{a\sqrt 3 }}{2}.a.\frac{{\sqrt 3 }}{2} - a.a.\frac{1}{2} = - \frac{1}{8}{a^2}\).
Suy ra \(n = - 0,1\).
Trả lời: −0,1.
Lời giải
Đồ thị hàm số đi qua gốc tọa độ \( \Rightarrow a = 0\).
\(x = 1\) là tệm cận đứng của đồ thị hàm số. Suy ra \(b = - 1\).
Do đó \(T = a + b = - 1\).
Trả lời: −1.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
\(\left( { - \infty ;1} \right)\).
\(\left( { - \infty ; - 1} \right)\).
\[\left( {1;3} \right)\].
\(\left( {3; + \infty } \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.