Câu hỏi:

20/10/2025 18 Lưu

Cho hình hộp chữ nhật \(ABCD.A'B'C'D'\) có \(AB = 2a,AD = 3a,A'A = 4a\).

index_html_33221cafe2273f8e.png

( a) \(\overrightarrow {AA'} + \overrightarrow {AB} + \overrightarrow {AD} = \overrightarrow {AC'} \).

( b) Gọi \(G\) là trọng tâm tam giác \(D'DC\). Khi đó \(\overrightarrow {AG} .\overrightarrow {DB} = - \frac{{23}}{3}{a^2}\).

( c) \(\left| {\overrightarrow {AB} + \overrightarrow {AD} + \overrightarrow {CC'} } \right| = a\sqrt {29} \).

( d) \(\overrightarrow {AA'} .\overrightarrow {AD} = 12{a^2}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) \(\overrightarrow {AA'} + \overrightarrow {AB} + \overrightarrow {AD} = \overrightarrow {AC'} \) (theo quy tắc hình hộp).

b)

index_html_95d2dd321d18a7ac.gif

Gọi \(M\) là trung điểm của \(DC\).

Ta có \(\overrightarrow {AG} = \overrightarrow {AM} + \overrightarrow {MG} = \overrightarrow {AD} + \overrightarrow {DM} + \frac{1}{3}\overrightarrow {MD'} \)\( = \overrightarrow {AD} + \frac{1}{2}\overrightarrow {DC} + \frac{1}{3}\overrightarrow {MD} + \frac{1}{3}\overrightarrow {DD'} \)\( = \overrightarrow {AD} + \frac{1}{2}\overrightarrow {AB} - \frac{1}{3}.\frac{1}{2}\overrightarrow {DC} + \frac{1}{3}\overrightarrow {AA'} \)

\( = \overrightarrow {AD} + \frac{1}{2}\overrightarrow {AB} - \frac{1}{6}\overrightarrow {AB} + \frac{1}{3}\overrightarrow {AA'} \)\( = \overrightarrow {AD} + \frac{1}{3}\overrightarrow {AB} + \frac{1}{3}\overrightarrow {AA'} \).

\(\overrightarrow {DB} = \overrightarrow {DA} + \overrightarrow {DC} \)\( = - \overrightarrow {AD} + \overrightarrow {AB} \).

Khi đó \(\overrightarrow {AG} .\overrightarrow {DB} = \left( {\overrightarrow {AD} + \frac{1}{3}\overrightarrow {AB} + \frac{1}{3}\overrightarrow {AA'} } \right)\left( { - \overrightarrow {AD} + \overrightarrow {AB} } \right)\)

\( = - {\overrightarrow {AD} ^2} - \frac{1}{3}\overrightarrow {AB} .\overrightarrow {AD} - \frac{1}{3}\overrightarrow {AA'} .\overrightarrow {AD} + \overrightarrow {AD} .\overrightarrow {AB} + \frac{1}{3}{\overrightarrow {AB} ^2} + \frac{1}{3}\overrightarrow {AA'} .\overrightarrow {AB} \)

\( = - {\overrightarrow {AD} ^2} + \frac{1}{3}{\overrightarrow {AB} ^2}\) (vì \(\overrightarrow {AB} .\overrightarrow {AD} = \overrightarrow {AA'} .\overrightarrow {AD} = \overrightarrow {AD} .\overrightarrow {AB} = \overrightarrow {AA'} .\overrightarrow {AB} = 0\))

\( = - 9{a^2} + \frac{1}{3}.4{a^2} = - \frac{{23}}{3}{a^2}\).

c) \(\left| {\overrightarrow {AB} + \overrightarrow {AD} + \overrightarrow {CC'} } \right| = \left| {\overrightarrow {AB} + \overrightarrow {AD} + \overrightarrow {AA'} } \right| = \left| {\overrightarrow {AC'} } \right| = \sqrt {4{a^2} + 9{a^2} + 16{a^2}} = a\sqrt {29} \).

d) Có \(AA' \bot AD\) nên \(\overrightarrow {AA'} .\overrightarrow {AD} = 0\).

Đáp án: a) Đúng; b) Đúng; c) Đúng; d) Sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Số tiền bán hết \(x\) mét vải lụa là \(B\left( x \right) = 220x\) nghìn đồng.

Lợi nhuận thu được khi bán \(x\) mét vải lụa là

\(L\left( x \right) = B\left( x \right) - C\left( x \right) = 220x - \left( {{x^3} - 3{x^2} - 20x + 500} \right)\)\( = - {x^3} + 3{x^2} + 240x - 500\).

Có \(L'\left( x \right) = - 3{x^2} + 6x + 240 = 0\)\( \Leftrightarrow x = 10\) (vì \(1 \le x \le 18\)).

Ta có \(L\left( 1 \right) = - {1^3} + {3.1^2} + 240.1 - 500 = - 258\); \(L\left( {10} \right) = - {10^3} + {3.10^2} + 240.10 - 500 = 1200\);

\(L\left( {18} \right) = - {18^3} + {3.18^2} + 240.18 - 500 = - 1040\).

Vậy mỗi ngày hộ làm nghề dệt này cần sản xuất và bán ra 10 mét vải thì thu được lợi nhuận tối đa là 1200 nghìn đồng.

Lời giải

Vì \(A \in Ox \Rightarrow A\left( {a;0;0} \right),B \in Oy \Rightarrow B\left( {0;b;0} \right)\).

Gọi \(G\) là trọng tâm tam giác \(ABC\), \(G \in Oz \Rightarrow G\left( {0;0;c} \right)\).

Do đó \(C\left( { - a; - b;3c} \right)\).

Ta có \(\overrightarrow {AB} = \left( { - a;b;0} \right),\overrightarrow {AC} = \left( { - 2a; - b;3c} \right)\).

Vì \(\Delta ABC\) vuông tại \(A\) nên \(\overrightarrow {AB} .\overrightarrow {AC} = 0\)\( \Leftrightarrow 2{a^2} - {b^2} = 0 \Leftrightarrow {b^2} = 2{a^2}\).

Khi đó \(\frac{{OA}}{{OB}} = \frac{{\sqrt {{a^2}} }}{{\sqrt {{b^2}} }} = \sqrt {\frac{{{a^2}}}{{2{a^2}}}} = \frac{{\sqrt 2 }}{2}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP