Câu hỏi:

21/10/2025 9 Lưu

Cho hai biến cố \[A\] và \[B\], với \[P\left( B \right) = 0,8\], \[P\left( {AB} \right) = 0,4\]. Tính \[P\left( {A|B} \right)\].

\(\frac{1}{2}\).

\(\frac{1}{4}\).

\(\frac{1}{8}\).

\(2\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn đáp án A

Ta có: \[P\left( {A|B} \right) = \frac{{P\left( {AB} \right)}}{{P\left( B \right)}} = \frac{{0,4}}{{0,8}} = \frac{1}{2}\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \(A\): “Bạn được chọn là nam” và \(B\): “Bạn được chọn tham gia biểu diễn văn nghệ”.

Khi đó, \(\overline A \): “Bạn được chọn là nữ” và \(\overline B \): “Bạn được chọn tham gia thi đấu thể thao”.

Lớp \[12A\] có \[60\% \] số học sinh tham gia thi đấu thể thao và còn lại \[40\% \] nên \(P\left( B \right) = 0,4\) và \(P\left( {\overline B } \right) = 0,4\).

Các bạn nữ đều tham gia biểu diễn văn nghệ nên \(P\left( {B|\overline A } \right) = 1\).

Trong số các bạn nam có \[20\% \] tham gia văn nghệ và \[80\% \] tham gia thi đấu thể thao nên ta có \(P\left( {B|A} \right) = 0,2\) và \(P\left( {\overline B |A} \right) = 0,8\).

Ta có: \[P\left( B \right) = P\left( {B|A} \right)P\left( A \right) + P\left( {B|\overline A } \right)P\left( {\overline A } \right)\]

\[ \Leftrightarrow 0,4 = 0,2\left( {1 - P\left( {\overline A } \right)} \right) + 1 \cdot P\left( {\overline A } \right) \Leftrightarrow P\left( {\overline A } \right) = 0,25\].

Khi đó, xác suất để chọn ra một học sinh là nữ với điều kiện có tham gia biểu diễn văn nghệ là

\(P\left( {\overline A |B} \right) = \frac{{P\left( {B|\overline A } \right)P\left( {\overline A } \right)}}{{P\left( B \right)}} = \frac{{P\left( {\overline A } \right)}}{{P\left( B \right)}} = \frac{{0,25}}{{0,4}} = 0,625 = 62,5\% \).

Đáp án: 62,5.

Lời giải

Gọi \(A\) là biến cố: “Minh làm đúng bài thứ nhất”.

\(\overline A \) là biến cố: “Minh làm sai bài thứ nhất”.

 \(B\)là biến cố: “Minh làm đúng bài thứ hai”.

Theo đề bài, ta có các xác suất:

\[P\left( A \right) = 0,7\];

\[P\left( {\overline A } \right) = 1 - P\left( A \right) = 1 - 0,7 = 0,3\];

\[P\left( {B\mid A} \right) = 0,8\];

\[P\left( {B\mid \overline A } \right) = 0,2\].

Xác suất Minh làm đúng cả hai bài là:

\[P\left( {A \cap B} \right) = P\left( {B|A} \right).P\left( A \right) = 0,8.0,7 = 0,56\].

Xác suất Minh làm sai bài thứ nhất và đúng bài thứ hai là:

\[P\left( {\overline A  \cap B} \right) = P\left( {B|\overline A } \right).P\left( {\overline A } \right) = 0,2.0,3 = 0,06\].

Ta có \[P\left( B \right) = P\left( {A \cap B} \right) + P\left( {\overline A  \cap B} \right) = 0,56 + 0,06 = 0,62\].

Xác suất Minh làm đúng bài thứ nhất biết rằng Minh đã làm đúng bài thứ hai là:

\[P\left( {A\mid B} \right) = \frac{{P\left( {A \cap B} \right)}}{{P\left( B \right)}} = \frac{{0,56}}{{0,62}} = \frac{{28}}{{31}}\].

Khi đó \[T = 2a + b = 2.28 + 31 = 87\].

Vậy, giá trị T là 87.

Đáp án: 87.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP