Cho hai biến cố \(A,\,B\) với \(P\left( B \right) = 0,8;P\left( {A|B} \right) = 0,5\). Tính \[P\left( {AB} \right)\].
\(\frac{3}{7}\).
\(0,4\).
\(0,8\).
\(0,5\).
Quảng cáo
Trả lời:
Chọn đáp án B
Ta có \(P\left( {AB} \right) = P\left( {A|B} \right)P\left( B \right) = 0,5.0,8 = 0,4\).
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi \(A\): “Bạn được chọn là nam” và \(B\): “Bạn được chọn tham gia biểu diễn văn nghệ”.
Khi đó, \(\overline A \): “Bạn được chọn là nữ” và \(\overline B \): “Bạn được chọn tham gia thi đấu thể thao”.
Lớp \[12A\] có \[60\% \] số học sinh tham gia thi đấu thể thao và còn lại \[40\% \] nên \(P\left( B \right) = 0,4\) và \(P\left( {\overline B } \right) = 0,4\).
Các bạn nữ đều tham gia biểu diễn văn nghệ nên \(P\left( {B|\overline A } \right) = 1\).
Trong số các bạn nam có \[20\% \] tham gia văn nghệ và \[80\% \] tham gia thi đấu thể thao nên ta có \(P\left( {B|A} \right) = 0,2\) và \(P\left( {\overline B |A} \right) = 0,8\).
Ta có: \[P\left( B \right) = P\left( {B|A} \right)P\left( A \right) + P\left( {B|\overline A } \right)P\left( {\overline A } \right)\]
\[ \Leftrightarrow 0,4 = 0,2\left( {1 - P\left( {\overline A } \right)} \right) + 1 \cdot P\left( {\overline A } \right) \Leftrightarrow P\left( {\overline A } \right) = 0,25\].
Khi đó, xác suất để chọn ra một học sinh là nữ với điều kiện có tham gia biểu diễn văn nghệ là
\(P\left( {\overline A |B} \right) = \frac{{P\left( {B|\overline A } \right)P\left( {\overline A } \right)}}{{P\left( B \right)}} = \frac{{P\left( {\overline A } \right)}}{{P\left( B \right)}} = \frac{{0,25}}{{0,4}} = 0,625 = 62,5\% \).
Đáp án: 62,5.
Lời giải
Gọi \(A,B,C\) lần lượt là biến cố thí sinh được chọn lọt vào Vòng sơ khảo, Vòng bán kết và Vòng chung kết.
a) Đúng. Vì có \(50{\rm{\% }}\) thí \({\rm{sinh}}\) lọt vào vòng sơ khảo nên \(P\left( A \right) = 0,5\).
b) Sai. Xác suất để thí sinh lọt vào Vòng bán kết là
\({\rm{\;}}P\left( B \right) = P\left( {AB} \right) = P\left( {B\mid A} \right)P\left( A \right) = 0,3 \cdot 0,5 = 0,15\).
c) Đúng. Xác suất để thí sinh lọt vào Vòng chung kết là
\(P\left( C \right) = P\left( {ABC} \right) = P\left( {C\mid AB} \right)P\left( {AB} \right) = 0,2.0,15 = 0,03\).
d) Sai. Ta có \(P\left( {\overline C \mid A} \right) = 1 - P\left( {C\mid A} \right) = 1 - \frac{{P\left( C \right)}}{{P\left( A \right)}} = 0,94\).
\[P\left( {A\mid \overline C } \right) = \frac{{P\left( {\overline C \mid A} \right)P\left( A \right)}}{{P\left( {\overline C } \right)}} = \frac{{0,94.0,5}}{{1 - 0,03}} = \frac{{47}}{{97}} = 0,485 < 0,49\].
Câu 3
\(0,25\).
\(0,65\).
\(0,55\).
\(0,5\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
\(\frac{7}{{13}}\).
\(\frac{6}{{13}}\).
\(\frac{4}{{13}}\).
\(\frac{9}{{13}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
\(\frac{1}{2}\).
\(\frac{1}{4}\).
\(\frac{1}{8}\).
\(2\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
\(P\left( {B|A} \right) = \frac{{P\left( B \right) + P\left( {A|B} \right)}}{{P\left( B \right)P\left( {A|B} \right) + P\left( {\overline B } \right)P\left( {A|\overline B } \right)}}\).
\(P\left( {B|A} \right) = \frac{{P\left( B \right)P\left( {A|B} \right)}}{{P\left( B \right)P\left( {A|B} \right) - P\left( {\overline B } \right)P\left( {A|\overline B } \right)}}\).
\(P\left( {B|A} \right) = \frac{{P\left( B \right)P\left( {A|B} \right)}}{{P\left( B \right)P\left( {A|\overline B } \right) + P\left( {\overline B } \right)P\left( {A|B} \right)}}\).
\(P\left( {B|A} \right) = \frac{{P\left( B \right)P\left( {A|B} \right)}}{{P\left( B \right)P\left( {A|B} \right) + P\left( {\overline B } \right)P\left( {A|\overline B } \right)}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.