Bảng dưới thống kê khối lượng một số quả táo được lựa chọn ngẫu nhiên trong một thùng hàng

Khoảng biến thiên của mẫu số liệu ghép nhóm trên là
\(10\).
\(12\).
\(2\).
\(20\).
Quảng cáo
Trả lời:
Khoảng biến thiên của mẫu số liệu là . Chọn A.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Số cá còn sống trong ao lúc đó là \(\frac{{31}}{{31 + t}}.300\) (con).
Sản lượng cá X tại thời điểm đó là \(f\left( t \right) = \frac{{31}}{{31 + t}}.300.0,45\left( {0,2 + \frac{{141}}{{155}}t - 0,05{t^2}} \right)\)\( = 4185.\frac{{0,2 + \frac{{141}}{{155}}t - 0,05{t^2}}}{{31 + t}}\).
Ta có \(f'\left( t \right) = 4185.\left[ {\frac{{\left( {\frac{{141}}{{155}} - 0,1t} \right)\left( {31 + t} \right) - \left( {0,2 + \frac{{141}}{{155}}t - 0,05{t^2}} \right)}}{{{{\left( {31 + t} \right)}^2}}}} \right]\)\( = 4185.\frac{{ - 0,05{t^2} - 3,1t + 28}}{{{{\left( {31 + t} \right)}^2}}}\);
Có \(f'\left( t \right) = 0 \Leftrightarrow - 0,05{t^2} - 3,1t + 28 = 0 \Leftrightarrow t = 8\) vì \(0 \le t \le 8\).
Có \(f\left( 0 \right) = 27;f\left( 8 \right) = 459;f\left( {10} \right) \approx 439\).
Vậy sản lượng lớn nhất có thể đạt được là 459 kg.
Lời giải
Giả sử sau 5 giây cabin di chuyển đến điểm \(M\left( {x;y;z} \right)\).
Khi đó ta có \(\overrightarrow {AM} \) và \(\overrightarrow u \) cùng hướng suy ra \(\overrightarrow {AM} = t\overrightarrow u = \left( {t;2t; - 2t} \right)\left( {t > 0} \right)\).
Mà quãng đường cabin đi được trong 5 giây là \(6.5 = 30\)(m).
Do đó \(AM = 30 \Leftrightarrow A{M^2} = 900 \Leftrightarrow {t^2} + 4{t^2} + 4{t^2} = 900 \Rightarrow t = 10\).
Suy ra \(\overrightarrow {AM} = \left( {10;20; - 20} \right)\) \( \Leftrightarrow \left\{ \begin{array}{l}x + 1 = 10\\y - 4 = 20\\z - 3 = - 20\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x = 9\\y = 24\\z = - 17\end{array} \right.\) \( \Rightarrow M\left( {9;24; - 17} \right)\).
Khi đó khoảng cách giữa cabin và người quan sát là \(BM = \sqrt {{{\left( {9 - 2} \right)}^2} + {{\left( {24 - 0} \right)}^2} + {{\left( { - 17 + 1} \right)}^2}} = \sqrt {881} \) m.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
\(4\).
\(5\).
\( - 3\).
\(0\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
\(\left( { - \infty ;1} \right)\).
\(\left( { - \infty ; - 1} \right)\).
\[\left( {1;3} \right)\].
\(\left( {3; + \infty } \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

