Câu hỏi:

21/10/2025 5 Lưu

Trong không gian \(Oxyz\), cho điểm \(M\left( {2;5;4} \right)\). Tìm tọa độ điểm \(M'\left( {a;b;c} \right)\) đối xứng với \(M\) qua mặt phẳng \(\left( {Oyz} \right)\). Tính \(a + b + c\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Vì \(M'\) đối xứng với \(M\) qua mặt phẳng \(\left( {Oyz} \right)\) nên \(M\left( { - 2;5;4} \right)\).

Suy ra \(a = - 2;b = 5;c = 4\). Do đó \(a + b + c = 7\).

Trả lời: 7.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

index_html_19f4676ce50ba237.png

Giả sử \(\overrightarrow P \) là trọng lượng của chiếc đèn.

Do chiếc đèn ở vị trí cân bằng nên \(\overrightarrow P = \overrightarrow {{F_1}} + \overrightarrow {{F_2}} + \overrightarrow {{F_3}} \).

Ta có \({\left( {\overrightarrow P } \right)^2} = {\left( {\overrightarrow {{F_1}} + \overrightarrow {{F_2}} + \overrightarrow {{F_3}} } \right)^2} = {\left( {\overrightarrow {{F_1}} } \right)^2} + {\left( {\overrightarrow {{F_2}} } \right)^2} + {\left( {\overrightarrow {{F_3}} } \right)^2} + 2\overrightarrow {{F_1}} \overrightarrow {{F_2}} + 2\overrightarrow {{F_2}} \overrightarrow {{F_3}} + 2\overrightarrow {{F_1}} \overrightarrow {{F_3}} \).

Mà \(\overrightarrow {{F_1}} \overrightarrow {{F_2}} = \overrightarrow {{F_2}} \overrightarrow {{F_3}} = \overrightarrow {{F_1}} \overrightarrow {{F_3}} = 0\) nên \(\left| {\overrightarrow P } \right| = \sqrt {{{\left| {\overrightarrow {{F_1}} } \right|}^2} + {{\left| {\overrightarrow {{F_2}} } \right|}^2} + {{\left| {\overrightarrow {{F_3}} } \right|}^2}} = 20\sqrt 3 \) N.

Mà \(\overrightarrow {{F_1}} \overrightarrow {{F_2}} = \overrightarrow {{F_2}} \overrightarrow {{F_3}} = \overrightarrow {{F_1}} \overrightarrow {{F_3}} = 0\) nên \(\left| {\overrightarrow P } \right| = \sqrt {{{\left| {\overrightarrow {{F_1}} } \right|}^2} + {{\left| {\overrightarrow {{F_2}} } \right|}^2} + {{\trái| {\overrightarrow {{F_3}} } \right|}^2}} = 20\sqrt 3 \) N.
 

Câu 2

\(x = 2\).

\(\left( { - 2;1} \right)\).

\(\left( {2; - 3} \right)\).

\(\left( { - 3;2} \right)\).

Lời giải

Dựa vào bảng biến thiên ta có \(\left( {2; - 3} \right)\) là điểm cực tiểu của đồ thị hàm số. Chọn C.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

\(f\left( 0 \right) = f\left( 4 \right)\).

\(f\left( 0 \right) > f\left( 2 \right)\).

\(f\left( 4 \right) > f\left( 0 \right)\).

\(f\left( 4 \right) > f\left( 2 \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

\(\left( { - 2;8; - 3} \right)\).

\(\left( { - 2;2;5} \right)\).

\(\left( { - 4;8; - 5} \right)\).

\(\left( { - 4;8; - 3} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP