Câu hỏi:

22/10/2025 11 Lưu

Trên nóc của một tòa nhà có một cột ăng – ten cao \(5{\rm{ m}}\). Từ vị trí quan sát \(A\) cao \(7{\rm{ m}}\) so với mặt đất, có thể nhìn thấy đỉnh \(B\) và đỉnh \(C\) của một cột ăng – ten dưới góc \(50^\circ \) và \(40^\circ \) so với phương nằm ngang.

Trên nóc của một tòa nhà có một cột ăng – ten cao \(5{\rm{ m}}\). Từ vị (ảnh 1)

a) \(CE = AE.\tan 40^\circ .\)

b) \(BE = AE.\tan 50^\circ .\)

c) \(AE = \frac{{BC}}{{\tan 40^\circ  + \tan 50^\circ }}\).

d) Chiều cao của tòa nhà lớn hơn 24 m.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: a) Đúng.            b) Đúng.            c) Sai.                  d) Sai.

• Chiều cao của tòa nhà chính là độ dài đoạn thẳng \(BH\).

Xét tam giác \(CAE\) vuông tại \(E\), ta có:

\(CE = AE.\tan \widehat {CAE} = AE.\tan 40^\circ {\rm{ }}\left( {\rm{m}} \right)\) (1).

Do đó, ý a) là đúng.

• Xét tam giác \(BAE\) vuông ở \(E\), ta có:

\(BE = AE.\tan \widehat {BAE} = AE.\tan 50^\circ {\rm{ }}\left( {\rm{m}} \right)\) (2).

Do đó, ý b) là đúng.

• Từ (1) và (2) suy ra \(BC = BE - CE = AE\tan 50^\circ  - AE\tan 40^\circ \)

                                \(BC = AE\left( {\tan 50^\circ  - \tan 40^\circ } \right)\)

                                \(5 = AE\left( {\tan 50^\circ  - \tan 40^\circ } \right)\)

                               \(AE = \frac{5}{{\tan 50^\circ  - \tan 40^\circ }}{\rm{ }}\left( {\rm{m}} \right)\).

Do đó, ý c) là sai.

• Với \(AE = \frac{5}{{\tan 50^\circ  - \tan 40^\circ }}\) suy ra \(CE = AE \cdot \tan \widehat {CAE} = \frac{5}{{\tan 50^\circ  - \tan 40^\circ }} \cdot \tan 40^\circ  \approx 11,9{\rm{ }}\left( {\rm{m}} \right){\rm{.}}\)

Chiều cao của tòa nhà là: \(5 + 11,9 + 7 \approx 23,9{\rm{ }}\left( {\rm{m}} \right)\).

Vậy tòa nhà cao \(23,9{\rm{ }}\left( {\rm{m}} \right)\).

Do đó, ý d) là sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(\frac{3}{4}.\)   
B. \(\frac{3}{5}.\)    
C. \(\frac{4}{3}.\)   
D. \(\frac{4}{5}.\)

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Cho tam giác \(ABC\) vuông tại \(A\) có \(AC = 3;\,\,AB = 4;\,\,BC = 5.\) Khi đó \(\tan C\) bằng A. \(\frac{3}{4}.\)	B. \(\frac{3}{5}.\)	C. \(\frac{4}{3}.\)	D. \(\frac{4}{5}.\) (ảnh 1)

Xét tam giác \(ABC\) vuông tại \(A\), có \(\tan C = \frac{{AB}}{{AC}} = \frac{3}{4}.\)

Lời giải

Hướng dẫn giải

Đáp án đúng là: a) Đúng.         b) Sai.             c) Sai.                  d) Đúng.

• Gọi \(x\) (ml) là thể tích dung dịch nước muối \(1,5\% \)\(y\) (ml) là thể tích nước cất \(0\% \) (\(x,{\rm{ }}y > 0\)).

Tổng thể tích dung dịch là \(1{\rm{ 000 ml}}\) nên ta có phương trình \(x + y = 1\,\,000\) (1).

Do đó, ý a) là đúng.

Tổng khối lượng muối trong dung dịch là \(0,9\% \) của \(1{\rm{ 000 ml}}\). Lượng muối trong dung dịch ban đầu là \(1,5\% .x\) và trong nước cất là \(0\).

Do đó ta có: \(0,015x + 0y = 0,009.1\,\,000\) hay \(0,015x = 9\) (2)

Do đó, ý b) là sai.

Từ (1) và (2) ta có hệ phương trình: \(\left\{ \begin{array}{l}x + y = 1\,\,000\\0,015x = 9\end{array} \right.\).

Do đó, ý c) là sai.

• Giải phương trình \(0,015x = 9\) ta được \(x = 600\) (thỏa mãn).

Thay \(x = 600\) vào phương trình (1), được: \(y = 1\,000 - 600 = 400\) (thỏa mãn).

Vậy Lan cần pha \(600{\rm{ ml}}\) dung dịch nước muối \(1,5\% \)\(400{\rm{ ml}}\) dung dịch nước cốt \(0\% \) để được dung dịch mong muốn.

Do đó, ý d) là đúng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP