Câu hỏi:

22/10/2025 568 Lưu

(1,5 điểm) Cho nửa đường tròn \[\left( O \right)\] đường kính \[AB\]. Lấy \[C\] nằm trên đường tròn \[\left( O \right)\]. Gọi \[K\] là trung điểm của dây cung \[BC\]. Qua \[B\] dựng tiếp tuyến với \[\left( O \right)\], cắt \[OK\] tại \[D\].

a) Chứng minh rằng \[OD \bot BC\] và \[\Delta ABC\] vuông.

b) Chứng minh \[DC\] là tiếp tuyến của đường tròn \[\left( O \right)\].

c) Vẽ \[CH \bot AB\] tại \[H\]. Gọi \[I\] là trung điểm của \[CH\]. Tiếp tuyến tại \[A\] của đường tròn \[\left( O \right)\] cắt \[BI\] tại \[E\]. Chứng minh \[E,C,D\] thẳng hàng.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

a) Chứng minh rằng \[OD \bo (ảnh 1)

a) Xét \[\Delta OBC\] cân tại \[O\] (do \[OC = OB = R\]) nên đường trung tuyến \[OK\] cũng là đường cao của \[\Delta OBC.\] Suy ra \[OK \bot BC\] hay \[OD \bot BC\].

Xét nửa đường tròn \(\left( O \right)\) đường kính \(AB,\)\[\widehat {ACB}\] là góc nội tiếp chắn nửa đường tròn nên \[\widehat {ACB} = 90^\circ .\]

Vậy \[\Delta ABC\] vuông tại \[C\].

b) Xét \[\Delta OBC\] cân tại \[O\] (do \[OC = OB = R\]) nên đường trung tuyến \[OK\] cũng là đường phân giác của \[\Delta OBC.\] Do đó \(\widehat {BOD} = \widehat {COD}.\)

Xét \[\Delta CDO\]\[\Delta BDO\] có:

\[OD\] là cạnh chung; \(\widehat {BOD} = \widehat {COD}\); \[OB = OC\]

Do đó \[\Delta CDO = \Delta BDO\] (c.g.c).

Suy ra \[\widehat {DCO} = \widehat {DBO} = 90^\circ \] (hai góc tương ứng).

Như vậy, \[OC \bot DC\] tại \[C\] thuộc \(\left( O \right)\) hay \[DC\] là tiếp tuyến của đường tròn \[\left( O \right)\].

c) Gọi \[F\] là giao điểm của \[BC,\,\,AE.\]

Ta có: \[IC \bot AB\]\[AF \bot AB\], suy ra \[IC\,{\rm{//}}\,AF\] hay \[IC\,{\rm{//}}\,EF\].

Xét \[\Delta BEF\], có: \[\frac{{IC}}{{EF}} = \frac{{IB}}{{EB}}\] (Hệ quả định lí Thalès) (1)

Xét \[\Delta BAE\], có: \[\frac{{IH}}{{AE}} = \frac{{IB}}{{EB}}\] (Hệ quả định lí Thalès) (2)

Từ (1) và (2) suy ra \[\frac{{IC}}{{EF}} = \frac{{IH}}{{EA}}\], mà \[IC = IH\] (do \(I\) là trung điểm của \(CH)\) nên \[EF = EA\] hay \[E\] là trung điểm của \[AF.\]

Ta có \[\widehat {FCA} = 90^\circ \] (cùng bù với \[\widehat {ACB} = 90^\circ \]) nên \[\Delta FCA\] vuông tại \[C\].

 

Xét \(\Delta ACF\) vuông tại \(C,\)\(CE\) là đường trung tuyến ứng với cạnh huyền \(AF\) nên \[CE = EA = EF = \frac{1}{2}AF.\]

Xét \[\Delta CEO\]\[\Delta AEO\], có:

\[CE = AE\], \[OC = OA\]\[OE\] là cạnh chung

Do đó \[\Delta CEO = \Delta AEO\] (c.c.c)

Suy ra \[\widehat {ECO} = \widehat {EAO} = 90^\circ \] (hai góc tương ứng).

Ta có: \[\widehat {ECO} + \widehat {OCD} = 90^\circ + 90^\circ = 180^\circ \] hay \[\widehat {ECD} = 180^\circ \].

Vậy ba điểm \[E,C,D\] thẳng hàng.

a) Chứng minh rằng \[OD \bo (ảnh 2)

 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án đúng là: a) Đúng.  b) Sai.              c) Sai.              d) Đúng.

• Gọi \(x\) là số câu mà thí sinh cần trả lời đúng trong vòng đầu tiên \(\left( {x \in {\mathbb{N}^ * }} \right)\).

Lúc này, số câu hỏi thí sinh trả lời sai trong vòng đầu tiên là: \(20 - x\) (câu).

Do đó, ý a) là đúng.

• Số điểm thí sinh nhận được khi trả lời đúng \(x\) câu hỏi là: \(8x\) (điểm).

Số điểm thí sinh bị trừ khi trả lời sai \(\left( {20 - x} \right)\) câu hỏi là: \(3\left( {20 - x} \right)\) (điểm).

Số điểm thí sinh có được khi thi xong vòng đầu tiên là: \(10 + 8x - 4\left( {20 - x} \right)\) (điểm).

Do đó, ý b) là sai.

• Theo bài, thí sinh cần đạt ít nhất \(90\) điểm để vào vòng tiếp theo nên ta có bất phương trình mô tả tình huống bài toán là: \(10 + 8x - 4\left( {20 - x} \right) \ge 90\).

Do đó, ý c) là sai.

• Giải bất phương trình:

\(10 + 8x - 4\left( {20 - x} \right) \ge 90\)

\(10 + 8x - 80 + 4x \ge 90\)

\(12x - 70 \ge 90\)

\(12x \ge 160\)

\(x \ge \frac{{160}}{{12}}\)

\(x \ge 13,33333.....\)

Do \(x \in {\mathbb{N}^ * }\) và cần tìm giá trị \(x\) nhỏ nhất nên \(x = 14.\)

Vậy để qua vòng tiếp theo, mỗi thí sinh cần trả lời đúng ít nhất là \(14\) câu.

Do đó, ý d) là đúng.

Câu 2

A. 1.                         
B. 2.                         
C. 3.                        
D. 0.

Lời giải

Hướng dẫn giải

Đáp án đúng là: B

Nhận thấy phương trình \(5\left( {x + 2} \right)\left( {2x - 1} \right) = 0\) có hai nghiệm, hoặc \(x - 2 = 0\) hoặc \(2x - 1 = 0\).

Câu 4

A. \(x \ne 0;\,\,x \ne 1.\)                          

B. \(x \ne 0;\,\,x \ne - 1.\)                           
C. \(x \ne 3;\,\,x \ne 2.\)                          
D. \(x \ne 0.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP