Cho hai đường tròn \(\left( {O;\,\,2{\rm{ cm}}} \right)\) và \(\left( {O';\,\,5{\rm{ cm}}} \right)\) tiếp xúc ngoài thì độ dài của \(OO'\) bằng:
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: B
Cho hai đường tròn \(\left( {O;\,\,2{\rm{ cm}}} \right)\) và \(\left( {O';\,\,5{\rm{ cm}}} \right)\) tiếp xúc ngoài thì \(OO' = 2 + 5 = 7{\rm{ }}\left( {{\rm{cm}}} \right)\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Đáp án: 720
Gọi chiều dài, chiều rộng của sân trường lần lượt là \(x,\,y\,\,\left( {\rm{m}} \right).\)
Điều kiện: \(x > 16,\,\,y > 0\).
Theo đề, chiều dài hơn chiều rộng \(16\,\,{\rm{m}}\)nên \(x - y = 16\). (1)
Hai lần chiều dài kém 5 lần chiều rộng \(28\,\,{\rm{m}}\)nên \(5y - 2x = 28\,{\rm{.}}\) (2)
Từ (1) và (2) ta có hệ phương trình \(\left\{ \begin{array}{l}x - y = 16\\5y - 2x = 28\end{array} \right.\).
Từ (1) có \(x = 16 + y\) thay vào (2) được: \(5y - 2\left( {16 + y} \right) = 28\,\) hay \(3y - 32 = 28\,{\rm{.}}\)
Suy ra \(3y = 60\) nên \(y = 20\) (thỏa mãn).
Do đó, \(x = 16 + 20 = 36\) (thỏa mãn)
Vậy diện tích sân trường là \(36 \cdot 20 = 720\,\,\left( {{{\rm{m}}^2}} \right)\).
Lời giải
Hướng dẫn giải
![ho đường tròn \[\left( O \right)\] và điểm \[A\] nằm bên (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/10/12-1761101459.png)
a) Vì \(AM,\,\,AN\) là hai tiếp tuyến của đường tròn \(\left( O \right)\) lần lượt tại \(M,\,\,N\) nên \(AM \bot OM,\,\,AN \bot ON.\)
Gọi \[E\] là trung điểm của \[OA\]. Khi đó \(OE = AE = \frac{1}{2}OA.\)
Xét \[\Delta MOA\] vuông tại \[M\] có \[ME\] là đường trung tuyến ứng với cạnh huyền \(OA\) nên \[ME = \frac{1}{2}OA\].
Xét \[\Delta NOA\] vuông tại \[N\] có \[NE\] là đường trung tuyến ứng với cạnh huyền \(OA\) nên \[NE = \frac{1}{2}OA\].
Vì \[NE = ME = OE = AE = \frac{1}{2}OA\] nên bốn điểm \[A,M,O,N\] cùng thuộc đường tròn tâm \[E,\] đường kính \[OA\].
b) Xét \[\Delta COB\] cân tại \[O\] (do \[OC = OB\]) có \[OI\] là đường trung tuyến nên đồng thời là đường cao, do đó \[OI \bot BC\]. Suy ra \[\Delta IOA\] vuông tại \[I\].
Xét \[\Delta IOA\] vuông tại \[I\] có \[IE\] là đường trung tuyến ứng với cạnh huyền \(OA\) nên \[IE = \frac{1}{2}OA\].
Khi đó, ta có \[NE = IE = OE = AE = \frac{1}{2}OA\] nên bốn điểm \[A,I,O,N\] cùng thuộc đường tròn tâm \[E,\] đường kính \[OA\].
Suy ra \[\widehat {AIN} = \widehat {AON}\] (hai góc nội tiếp cùng chắn cung \[AN\] của đường tròn tâm \[E\]). (*)
Xét đường tròn \(\left( O \right)\) có \[AM,AN\] là hai tiếp tuyến cắt nhau tại \[A\], suy ra \[OA\] là phân giác của \[\widehat {MON}\]
Do đó, \[\widehat {AON} = \frac{1}{2}\widehat {MON}\].
Mà \[\widehat {NFM} = \frac{1}{2}\widehat {MON}\] (góc nội tiếp và góc ở tâm cùng chắn cung \[MN\])
Suy ra \[\widehat {NFM} = \widehat {AON}\] (**)
Từ (*) và (**), suy ra \[\widehat {NFM} = \widehat {AIN}\].
Mà hai góc này ở vị trí đồng vị, do đó \[MF\,{\rm{//}}\,AC\].
c)
![ho đường tròn \[\left( O \right)\] và điểm \[A\] nằm bên (ảnh 2)](https://video.vietjack.com/upload2/quiz_source1/2025/10/13-1761101469.png)
⦁ Gọi \(H\) là giao điểm của \(MN\) và \(OA.\)
Ta có \(AM = AN\) (tính chất hai tiếp tuyến cắt nhau) và \(OM = ON\) nên \(A,\,\,O\) cùng nằm trên đường trung trực của \(MN\) hay \(OA\) là đường trung trực của \(MN\).
Suy ra \[MN \bot OA\] hay \[HN \bot OA\].
Xét \[\Delta OHN\] và \[\Delta ONA\], có: \[\widehat {OHN} = \widehat {ONA} = 90^\circ \] và \[\widehat {AON}\] là góc chung
Do đó (g.g)
Suy ra \[\frac{{OH}}{{ON}} = \frac{{ON}}{{OA}}\] suy ra \[OH.OA = O{N^2} = {R^2}\] (3).
⦁ Ta có \(OC = OB,\,\,IC = IB\) (do \(I\) là trung điểm của \(BC),\) \(KC = KB\) (tính chất hai tiếp tuyến cắt nhau) nên ba điểm \(O,\,\,I,\,\,K\) thẳng hàng.
Xét \[\Delta OIB\] và \[\Delta OBK\], có: \[\widehat {OIB} = \widehat {OBK} = 90^\circ \] và \[\widehat {BOK}\] là góc chung
Do đó (g.g)
Suy ra \[\frac{{OI}}{{OB}} = \frac{{OB}}{{OK}}\] suy ra \[OI.OK = O{B^2} = {R^2}\] (4).
Từ (3) và (4) suy ra \[OI.OK = OH.OA = {R^2}.\] Từ đó, ta có \[\frac{{OI}}{{OH}} = \frac{{OA}}{{OK}}\].
Xét \[\Delta OIA\] và \[\Delta OHK\] có: \[\widehat {AOK}\] là góc chung và \[\frac{{OI}}{{OH}} = \frac{{OA}}{{OK}}\]
Do đó (c.g.c)
Suy ra \[\widehat {OHK} = \widehat {OIA} = 90^\circ \], suy ra \[HK \bot OA\].
Mà \[MN \bot OA\] tại \[H\] và \[MN\] cố định (do điểm \(A\) cố định), do đó \[K\] thuộc \[MN\] cố định.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \(\left\{ \begin{array}{l}x - 3y = 5\\2y - x = 3\end{array} \right.\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

