Câu hỏi:

22/10/2025 247 Lưu

Cho tam giác \(ABC\) vuông tại \(A\)\(AC = 3;\,\,AB = 4;\,\,BC = 5.\) Khi đó \(\tan C\) bằng

A. \(\frac{3}{4}.\)         

B. \(\frac{3}{5}.\)         
C. \(\frac{4}{3}.\)         
D. \(\frac{4}{5}.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: A

Cho tam giác \(ABC\) vuông tại \(A\) có \(AC = 3;\,\,AB = 4;\,\,BC = 5.\) Khi đó \(\tan C\) bằng A. \(\frac{3}{4}.\)	B. \(\frac{3}{5}.\)	C. \(\frac{4}{3}.\)	D. \(\frac{4}{5}.\) (ảnh 1)

Xét tam giác \(ABC\) vuông tại \(A\), có \(\tan C = \frac{{AB}}{{AC}} = \frac{3}{4}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án: 35

Gọi vận tốc của hai xe đi từ \(A\)\(B\) lần lượt là \(x,\,y{\rm{ }}\left( {{\rm{km/h}}} \right)\).

Điều kiện \(y > 5,\,x > 0.\)

Theo đề, hai xe khởi hành cùng một lúc từ hai địa điểm \(A,\,\,B\) cách nhau \(130\,\,{\rm{km}}\)và gặp nhau sau 2 giờ nên ta có \(2x + 2y = 130\) (1)

Mà xe đi từ \(B\) có vận tốc nhanh hơn xe đi từ \(A\)\(5{\rm{ km/h}}\) nên \(y - x = 5\) (2)

Từ (1) và (2) ta có hệ phương trình \(\left\{ \begin{array}{l}2x + 2y = 130\\y - x = 5\end{array} \right.\).

Từ (2) có \(y = 5 + x\) thay vào (1) được: \(2x + 2\left( {5 + x} \right) = 130\).

Suy ra \(4x = 120\) nên \(x = 30\) (thỏa mãn).

Do đó, \(y = 30 + 5 = 35\) (thỏa mãn).

Vậy vận tốc xe đi từ \(A\) có vận tốc 30 km/h, xe đi từ \(B\) có vận tốc 35 km/h.

Lời giải

Hướng dẫn giải

Cho  \(\Delta ABC\) nhọn có ba đỉnh nằm trên đườn (ảnh 1)

a) Gọi \(I\) là trung điểm của \(AM.\) Khi đó \(AI = MI = \frac{1}{2}AM.\)

Xét \(\Delta AHM\) vuông tại \(H\)\(HI\) là đường trung tuyến ứng với cạnh huyền \(AM\) nên \(HI = \frac{1}{2}AM.\)

Xét \(\Delta AKM\) vuông tại \(K\)\(KI\) là đường trung tuyến ứng với cạnh huyền \(AM\) nên \(KI = \frac{1}{2}AM.\)

Do đó \(AI = HI = MI = KI = \frac{1}{2}AM\) nên bốn điểm \(A,H,M,K\) cùng thuộc đường tròn tâm \(I,\) đường kính \(AM\).

Hay \(AM\) là đường kính của đường tròn \(\left( I \right)\) đi qua ba điểm \(A,\,\,H,\,\,K.\)

b) Gọi \(N\) là giao điểm của \(HI\) và đường tròn tâm \(I\) đường kính \(AM.\)

Suy ra \(\widehat {HKN} = 90^\circ \) (góc nội tiếp chắn nửa đường tròn) hay \(\Delta HKN\) vuông tại \(K\)

Ta có \(HK = HN.\sin \widehat {HNK}\)

\(HN = AM\) (cùng là đường kính của đường tròn tâm \(I\))

\(\widehat {HNK} = \widehat {HAK}\) (hai góc nội tiếp cùng chắn cung \(HK\) của đường tròn tâm \(I\))

Suy ra \[HK = AM \cdot \sin \widehat {HAK} = AM \cdot \sin \widehat {BAC}.\]

c) Ta có \(\Delta ABC\) cố định nên \(\sin \widehat {BAC}\) không đổi

Do đó từ \(HK = AM.\sin \widehat {BAC}\), để \(HK\) dài nhất thì \(AM\) dài nhất mà \(AM\) là dây của đường tròn \(\left( O \right)\)

Nên \(AM\) dài nhất khi \(AM\) là đường kính của đường tròn \(\left( O \right)\)

Do đó \(M\) đối xứng với \(A\) qua \(\left( O \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP