Phần 2. (2,0 điểm) Câu trắc nghiệm đúng sai
Trong câu 13, 14, hãy chọn đúng hoặc sai cho mỗi ý a), b), c), d).
Một nhà tài trợ dự kiến tổ chức một buổi đi dã ngoại tập thể nhằm giúp các bạn học sinh vùng cao trải nghiệm thực tế tại một trang trại trong 1 ngày (từ 14h00 ngày hôm trước đến 12h00 ngày hôm sau). Cho biết số tiền nhà tài trợ dự kiến là \(30\) triệu đồng và giá thuê các dịch vụ và phòng nghỉ là \(17\) triệu đồng 1 ngày, giá mỗi suất ăn trưa, ăn tối là \(60\,000\) đồng và mỗi suất ăn sáng là \(30\,000\) đồng. Gọi \(x\) là số bạn học sinh có thể tham gia \(\left( {x \in \mathbb{N}*} \right)\).
a) Chi phí ăn uống của mỗi người trong một ngày là \(150\,000\)đồng.
b) Tổng chi phí phải trả cho buổi dã ngoại có \(x\) bạn tham gia là \(150\,000x + 17\,000\,000\) đồng.
c) Số bạn tham gia phải thỏa mãn \(150\,000x + 17\,000\,000 < 30\,000\,000\).
d) Có thể tổ chức cho nhiểu nhất 87 bạn tham gia.
Phần 2. (2,0 điểm) Câu trắc nghiệm đúng sai
Trong câu 13, 14, hãy chọn đúng hoặc sai cho mỗi ý a), b), c), d).
Một nhà tài trợ dự kiến tổ chức một buổi đi dã ngoại tập thể nhằm giúp các bạn học sinh vùng cao trải nghiệm thực tế tại một trang trại trong 1 ngày (từ 14h00 ngày hôm trước đến 12h00 ngày hôm sau). Cho biết số tiền nhà tài trợ dự kiến là \(30\) triệu đồng và giá thuê các dịch vụ và phòng nghỉ là \(17\) triệu đồng 1 ngày, giá mỗi suất ăn trưa, ăn tối là \(60\,000\) đồng và mỗi suất ăn sáng là \(30\,000\) đồng. Gọi \(x\) là số bạn học sinh có thể tham gia \(\left( {x \in \mathbb{N}*} \right)\).
a) Chi phí ăn uống của mỗi người trong một ngày là \(150\,000\)đồng.
b) Tổng chi phí phải trả cho buổi dã ngoại có \(x\) bạn tham gia là \(150\,000x + 17\,000\,000\) đồng.
c) Số bạn tham gia phải thỏa mãn \(150\,000x + 17\,000\,000 < 30\,000\,000\).
d) Có thể tổ chức cho nhiểu nhất 87 bạn tham gia.
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: a) Đúng. b) Đúng. c) Sai. d) Sai.
• Chi phí ăn uống của mỗi người trong một ngày là \(60\,000 + 60\,000 + 30\,000 = 150\,000\) (đồng).
Do đó, ý a) là đúng.
• Gọi \(x\) là số bạn học sinh có thể tham gia \(\left( {x \in \mathbb{N}*} \right)\).
Tổng chi phí phải trả cho buổi dã ngoại có \(x\) bạn tham gia là \(150\,000x + 17\,000\,000\) (đồng).
Do đó, ý b) là đúng.
• Vì số tiền nhà tài trợ dự kiến là \(30\) triệu đồng nên ta có bất phương trình:
\(150\,000x + 17\,000\,000 \le 30\,000\,000\).
Do đó, ý c) là sai.
• Giải bất phương trình:
\(150\,000x + 17\,000\,000 \le 30\,000\,000\)
\(x \le \frac{{260}}{3} \approx 86,7\)
Vậy có thể tổ chức cho nhiều nhất cho \(86\) bạn tham gia.
Do đó, ý d) là sai.
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Đáp án: 35
Gọi vận tốc của hai xe đi từ \(A\) và \(B\) lần lượt là \(x,\,y{\rm{ }}\left( {{\rm{km/h}}} \right)\).
Điều kiện \(y > 5,\,x > 0.\)
Theo đề, hai xe khởi hành cùng một lúc từ hai địa điểm \(A,\,\,B\) cách nhau \(130\,\,{\rm{km}}\)và gặp nhau sau 2 giờ nên ta có \(2x + 2y = 130\) (1)
Mà xe đi từ \(B\) có vận tốc nhanh hơn xe đi từ \(A\) là \(5{\rm{ km/h}}\) nên \(y - x = 5\) (2)
Từ (1) và (2) ta có hệ phương trình \(\left\{ \begin{array}{l}2x + 2y = 130\\y - x = 5\end{array} \right.\).
Từ (2) có \(y = 5 + x\) thay vào (1) được: \(2x + 2\left( {5 + x} \right) = 130\).
Suy ra \(4x = 120\) nên \(x = 30\) (thỏa mãn).
Do đó, \(y = 30 + 5 = 35\) (thỏa mãn).
Vậy vận tốc xe đi từ \(A\) có vận tốc 30 km/h, xe đi từ \(B\) có vận tốc 35 km/h.
Lời giải
Hướng dẫn giải
Đáp án: −4
Ta có: \[\frac{{4x + 9}}{3} + \frac{1}{2} \ge \frac{{2x - 1}}{4}\]
\[\frac{{4\left( {4x + 9} \right)}}{{12}} + \frac{6}{{12}} \ge \frac{{3\left( {2x - 1} \right)}}{{12}}\]
\[4\left( {4x + 9} \right) + 6 \ge 3\left( {2x - 1} \right)\]
\[16x + 36 + 6 \ge 6x - 3\]
\[16x + 42 \ge 6x - 3\]
\[16x - 6x \ge - 3 - 42\]
\[10x \ge - 45\]
\[x \ge - \frac{9}{2}.\]
Vậy bất phương trình có nghiệm là \[x \ge - \frac{9}{2}.\]
Do đó, giá trị nguyên nhỏ nhất thỏa mãn bất phương trình trên là \[ - 4\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

