Câu hỏi:

22/10/2025 20 Lưu

(0,5 điểm) Nam làm một chiếc hộp không nắp dạng hình hộp chữ nhật bằng bìa carton có thể tích \(3{\rm{ d}}{{\rm{m}}^3}\). Biết tỉ số giữa chiều cao \(h\) và chiều rộng đáy \(y\) bằng \(4\). Xác định chiều dài \(x\) để lượng bìa cần sử dụng là ít nhất.

Nam làm một chiếc hộp không nắp dạng hình h (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Theo đề bài, tỉ số giữa chiều cao \(h\) và chiều rộng đáy \(y\) bằng \(4\) nên \(h = 4y\).

Thể tích chiếc hộp \(3{\rm{ d}}{{\rm{m}}^3}\) nên \(xyh = 3{\rm{ }}\left( {{\rm{d}}{{\rm{m}}^3}} \right)\) hay \(4x{y^2} = 3\), suy ra \(x = \frac{3}{{4{y^2}}}\).

Do chiếc hộp không nắp, do đó diện tích bìa cần dùng là tổng diện tích đáy hộp và diện tích xung quanh của hộp.

Ta có: \(S = xy + 2h\left( {x + y} \right) = \frac{3}{{4{y^2}}} \cdot y + 2 \cdot 4y \cdot \left( {\frac{3}{{4{y^2}}} + y} \right)\)

              \( = \frac{3}{{4y}} + \frac{6}{y} + 8{y^2} = \frac{{27}}{{4y}} + 8{y^2} = \frac{{27}}{{8y}} + \frac{{27}}{{8y}} + 8{y^2}\).

Do \(y\) là chiều rộng của hộp nên \(y > 0\).

Do đó, áp dụng bất đẳng thức Cauchy cho ba số không âm, ta được:

\(\frac{{27}}{{8y}} + \frac{{27}}{{8y}} + 8{y^2} \ge 3 \cdot \sqrt[3]{{\frac{{27}}{{8y}} \cdot \frac{{27}}{{8y}} \cdot 8{y^2}}}\), suy ra \(S \ge \frac{{27}}{2}.\)

Dấu “=” xảy ra khi và chỉ khi \(\frac{{27}}{{8y}} = 8{y^2}\), hay \({y^3} = \frac{{27}}{{64}}\) nên \(y = \frac{3}{4}\) (dm).

Do đó, \(x = \frac{3}{{4{y^2}}} = \frac{3}{{4 \cdot {{\left( {\frac{3}{4}} \right)}^2}}} = \frac{4}{3}{\rm{ }}\left( {{\rm{dm}}} \right)\).

Vậy lượng bìa cần dùng ít nhất có diện tích là \(\frac{{27}}{2}{\rm{ }}\left( {{\rm{d}}{{\rm{m}}^2}} \right)\) khi chiều dài \(x = \frac{4}{3}\) dm.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án: 35

Gọi vận tốc của hai xe đi từ \(A\)\(B\) lần lượt là \(x,\,y{\rm{ }}\left( {{\rm{km/h}}} \right)\).

Điều kiện \(y > 5,\,x > 0.\)

Theo đề, hai xe khởi hành cùng một lúc từ hai địa điểm \(A,\,\,B\) cách nhau \(130\,\,{\rm{km}}\)và gặp nhau sau 2 giờ nên ta có \(2x + 2y = 130\) (1)

Mà xe đi từ \(B\) có vận tốc nhanh hơn xe đi từ \(A\)\(5{\rm{ km/h}}\) nên \(y - x = 5\) (2)

Từ (1) và (2) ta có hệ phương trình \(\left\{ \begin{array}{l}2x + 2y = 130\\y - x = 5\end{array} \right.\).

Từ (2) có \(y = 5 + x\) thay vào (1) được: \(2x + 2\left( {5 + x} \right) = 130\).

Suy ra \(4x = 120\) nên \(x = 30\) (thỏa mãn).

Do đó, \(y = 30 + 5 = 35\) (thỏa mãn).

Vậy vận tốc xe đi từ \(A\) có vận tốc 30 km/h, xe đi từ \(B\) có vận tốc 35 km/h.

Lời giải

Hướng dẫn giải

Đáp án đúng là: a) Đúng.  b) Đúng.          c) Sai.              d) Sai.

• Chi phí ăn uống của mỗi người trong một ngày là \(60\,000 + 60\,000 + 30\,000 = 150\,000\) (đồng).

Do đó, ý a) là đúng.

• Gọi \(x\) là số bạn học sinh có thể tham gia \(\left( {x \in \mathbb{N}*} \right)\).

Tổng chi phí phải trả cho buổi dã ngoại có \(x\) bạn tham gia là \(150\,000x + 17\,000\,000\) (đồng).

Do đó, ý b) là đúng.

• Vì số tiền nhà tài trợ dự kiến là \(30\) triệu đồng nên ta có bất phương trình:

\(150\,000x + 17\,000\,000 \le 30\,000\,000\).

Do đó, ý c) là sai.

• Giải bất phương trình:

          \(150\,000x + 17\,000\,000 \le 30\,000\,000\)

          \(x \le \frac{{260}}{3} \approx 86,7\)

Vậy có thể tổ chức cho nhiều nhất cho \(86\) bạn tham gia.

Do đó, ý d) là sai.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. 1.                         
B. 2.                         
C. 3.                        
D. 0.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP