Câu hỏi:

22/10/2025 9 Lưu

(1,5 điểm) Cho \(\Delta ABC\) nhọn có ba đỉnh nằm trên đường tròn \(\left( O \right)\). Điểm \(M\) di động trên cung nhỏ \(BC\). Vẽ \(MH\) vuông góc với \(AB\)\(H\), \(MK\) vuông góc với \(AC\)\(K\).

a) Chứng minh rằng \(AM\) là đường kính của đường tròn đi qua ba điểm \(A,\,\,H,\,\,K.\)

b) Chứng minh rằng \(HK = AM.\sin \widehat {BAC}\)

c) Xác định vị trí của điểm \(M\) trên cung nhỏ \(BC\) để \(HK\)dài nhất.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Cho  \(\Delta ABC\) nhọn có ba đỉnh nằm trên đườn (ảnh 1)

a) Gọi \(I\) là trung điểm của \(AM.\) Khi đó \(AI = MI = \frac{1}{2}AM.\)

Xét \(\Delta AHM\) vuông tại \(H\)\(HI\) là đường trung tuyến ứng với cạnh huyền \(AM\) nên \(HI = \frac{1}{2}AM.\)

Xét \(\Delta AKM\) vuông tại \(K\)\(KI\) là đường trung tuyến ứng với cạnh huyền \(AM\) nên \(KI = \frac{1}{2}AM.\)

Do đó \(AI = HI = MI = KI = \frac{1}{2}AM\) nên bốn điểm \(A,H,M,K\) cùng thuộc đường tròn tâm \(I,\) đường kính \(AM\).

Hay \(AM\) là đường kính của đường tròn \(\left( I \right)\) đi qua ba điểm \(A,\,\,H,\,\,K.\)

b) Gọi \(N\) là giao điểm của \(HI\) và đường tròn tâm \(I\) đường kính \(AM.\)

Suy ra \(\widehat {HKN} = 90^\circ \) (góc nội tiếp chắn nửa đường tròn) hay \(\Delta HKN\) vuông tại \(K\)

Ta có \(HK = HN.\sin \widehat {HNK}\)

\(HN = AM\) (cùng là đường kính của đường tròn tâm \(I\))

\(\widehat {HNK} = \widehat {HAK}\) (hai góc nội tiếp cùng chắn cung \(HK\) của đường tròn tâm \(I\))

Suy ra \[HK = AM \cdot \sin \widehat {HAK} = AM \cdot \sin \widehat {BAC}.\]

c) Ta có \(\Delta ABC\) cố định nên \(\sin \widehat {BAC}\) không đổi

Do đó từ \(HK = AM.\sin \widehat {BAC}\), để \(HK\) dài nhất thì \(AM\) dài nhất mà \(AM\) là dây của đường tròn \(\left( O \right)\)

Nên \(AM\) dài nhất khi \(AM\) là đường kính của đường tròn \(\left( O \right)\)

Do đó \(M\) đối xứng với \(A\) qua \(\left( O \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án: 35

Gọi vận tốc của hai xe đi từ \(A\)\(B\) lần lượt là \(x,\,y{\rm{ }}\left( {{\rm{km/h}}} \right)\).

Điều kiện \(y > 5,\,x > 0.\)

Theo đề, hai xe khởi hành cùng một lúc từ hai địa điểm \(A,\,\,B\) cách nhau \(130\,\,{\rm{km}}\)và gặp nhau sau 2 giờ nên ta có \(2x + 2y = 130\) (1)

Mà xe đi từ \(B\) có vận tốc nhanh hơn xe đi từ \(A\)\(5{\rm{ km/h}}\) nên \(y - x = 5\) (2)

Từ (1) và (2) ta có hệ phương trình \(\left\{ \begin{array}{l}2x + 2y = 130\\y - x = 5\end{array} \right.\).

Từ (2) có \(y = 5 + x\) thay vào (1) được: \(2x + 2\left( {5 + x} \right) = 130\).

Suy ra \(4x = 120\) nên \(x = 30\) (thỏa mãn).

Do đó, \(y = 30 + 5 = 35\) (thỏa mãn).

Vậy vận tốc xe đi từ \(A\) có vận tốc 30 km/h, xe đi từ \(B\) có vận tốc 35 km/h.

Lời giải

Hướng dẫn giải

Đáp án đúng là: a) Đúng.  b) Đúng.          c) Sai.              d) Sai.

• Chi phí ăn uống của mỗi người trong một ngày là \(60\,000 + 60\,000 + 30\,000 = 150\,000\) (đồng).

Do đó, ý a) là đúng.

• Gọi \(x\) là số bạn học sinh có thể tham gia \(\left( {x \in \mathbb{N}*} \right)\).

Tổng chi phí phải trả cho buổi dã ngoại có \(x\) bạn tham gia là \(150\,000x + 17\,000\,000\) (đồng).

Do đó, ý b) là đúng.

• Vì số tiền nhà tài trợ dự kiến là \(30\) triệu đồng nên ta có bất phương trình:

\(150\,000x + 17\,000\,000 \le 30\,000\,000\).

Do đó, ý c) là sai.

• Giải bất phương trình:

          \(150\,000x + 17\,000\,000 \le 30\,000\,000\)

          \(x \le \frac{{260}}{3} \approx 86,7\)

Vậy có thể tổ chức cho nhiều nhất cho \(86\) bạn tham gia.

Do đó, ý d) là sai.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. 1.                         
B. 2.                         
C. 3.                        
D. 0.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP