Câu hỏi:

23/10/2025 14 Lưu

Để xác định khoảng cách từ một gốc cây \[A\] trên một hòn đảo nhỏ giữa biển đến vị trí con sao biển \[C\] trên bãi cát (như hình bên dưới), người ta chọn một điểm \[B\] trên bãi biển cách điểm \[C\] một khoảng \[1225\,\,{\rm{m}}\] và dùng giác kế ngắm xác định được \[\widehat {ABC} = {75^{\rm{o}}}\]; \[\widehat {ACB} = {65^{\rm{o}}}\]. Tính khoảng cách \[AC\] (kết quả làm tròn đến đơn vị mét).

Để xác định khoảng cách từ một gốc cây \[A\] trên một hòn đảo nh (ảnh 1)

a) \[\widehat {BAC} = 40^\circ {\rm{.}}\]

b) Tam giác \[ABC\] nhọn.

c) \[\frac{{BC}}{{\sin A}} = \frac{{AC}}{{\sin B}} = \frac{{AB}}{{\sin C}}\].

d) Khoảng cách từ một gốc cây \[A\] trên một hòn đảo nhỏ giữa biển đến vị trí con sao biển \[C\] trên bãi cát là \[1625{\rm{ m}}{\rm{.}}\]

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đúng. Áp dụng định lý tổng ba góc trong một tam giác, ta có:

\[\widehat {BAC} = {180^{\rm{o}}} - \left( {\widehat {ABC} + \widehat {ACB}} \right) = 180^\circ  - \left( {75^\circ  + 65^\circ } \right) = 40^\circ .\]

b) Đúng. Vì \[\widehat {ABC} = 75^\circ \,;\,\,\widehat {ACB} = 65^\circ \] và \[\widehat {BAC} = 40^\circ \] nên \[\Delta ABC\] nhọn.

c) Đúng. Xét tam giác nhọn \[ABC\], kẻ các đường cao \[BD,\,\,CE\] thì các đường cao này nằm trong tam giác (như hình vẽ) có \[a = BC;\,\,b = AC;\,\,c = AB\].

Để xác định khoảng cách từ một gốc cây \[A\] trên một hòn đảo nh (ảnh 2)

Xét \[\Delta ADB\] vuông tại \[D\], áp dụng hệ thức giữa cạnh và góc nhọn trong tam giác vuông ta có:

\[BD = AB \cdot \sin \widehat {BAC} = c \cdot \sin A.\]      \[\left( 1 \right)\]

Xét \[\Delta CDB\] vuông tại \[D\], áp dụng hệ thức giữa cạnh và góc nhọn trong tam giác vuông ta có:

\[BD = BC \cdot \sin \widehat {ACB} = a \cdot \sin C.\]      \[\left( 2 \right)\]

Từ \[\left( 1 \right)\] và \[\left( 2 \right)\] suy ra \[c \cdot \sin A = a \cdot \,\sin C\] hay \[\frac{a}{{\sin A}} = \frac{c}{{\sin C}}.\]

Chứng minh tương tự, ta được \[b \cdot \sin A = a \cdot \sin B\] hay \[\frac{a}{{\sin A}} = \frac{b}{{\sin B}}.\]

Do đó \[\frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{c}{{\sin C}}\] hay \[\frac{{BC}}{{\sin A}} = \frac{{AC}}{{\sin B}} = \frac{{AB}}{{\sin C}}\].

d) Sai. Từ câu c, ta có: \[\frac{{BC}}{{\sin A}} = \frac{{AC}}{{\sin B}} = \frac{{AB}}{{\sin C}}\].

Suy ra \[\frac{{1225}}{{\sin 40^\circ }} = \frac{{AC}}{{\sin 75^\circ }}\] hay \[AC = \frac{{1\,\,225 \cdot \sin 75^\circ }}{{\sin 40^\circ }} \approx 1841\,\,{\rm{(m)}}{\rm{.}}\]

Vậy khoảng cách \[AC\] là \[1841{\rm{ m}}\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn C

Gắn dữ kiện của bài toán vào m (ảnh 2)

Gắn dữ kiện của bài toán vào mô hình Toán học như trên hình vẽ.

Gọi \[N\] là hình chiếu của \[M\] lên đoạn \[AH\].

Vì \[MN\] và \[BH\] là các đoạn thẳng nằm trên phương ngang; \[MB\] và \[NH\] nằm trên phương thẳng đứng nên tứ giác \[MBHN\] là hình chữ nhật.

Suy ra \[NH = MB = 1,55\,\,{\rm{m}}\]; \[MN = BH = 13,65\,\,{\rm{m}}\].

Tam giác \[ANM\] vuông tại \[N\] nên \[AN = MN \cdot \tan M.\]

Ta có:\[AH = AN + NH\]suy ra \[AH = MN \cdot \tan M + NH\].

Do đó \[AH = 13,65 \cdot \tan 58^\circ  + 1,55 \approx 23,39\,\,({\rm{m}}).\]

Vậy chiều cao của tháp khoảng \[23,39\,\,{\rm{m}}\].

Lời giải

Do mặt đất là phương ngang nên \[\widehat {BCA} = 30^\circ \] và \[\widehat {BDA} = 60^\circ \].

Gọi \[x\] (m/phút) là vận tốc xe máy, điều kiện \[x > 0\].

Vì xe máy đi từ \[C\] đến \[D\] trong \[6\] phút nên \[CD = 6x\,\,\left( {\rm{m}} \right)\]

• Xét \[\Delta ABC\] vuông tại \[A\], ta có:

\[AC = AB \cdot \cot \widehat {BCA} = AB \cdot \cot 30^\circ  = AB \cdot \tan 60^\circ  = \sqrt 3 AB\] (do \[\cot 30^\circ  = \tan 60^\circ \]) \[\left( 1 \right)\]

• Xét \[\Delta ABD\] vuông tại \[A\], ta có:

\[AD = AB \cdot \,\cot \widehat {BDA} = AB \cdot \,\cot 60^\circ  = AB \cdot \tan 30^\circ  = \frac{{\sqrt 3 AB}}{3}\] (do \[\cot 60^\circ  = \tan 30^\circ \]) \[\left( 2 \right)\]

Từ \[\left( 1 \right)\] và \[\left( 2 \right)\] suy ra \[AC - AD = AB\left( {\sqrt 3  - \frac{{\sqrt 3 }}{3}} \right)\] nên \[CD = \frac{{2\sqrt 3 }}{3}AB\].

Ta có \[\frac{{AD}}{{CD}} = \frac{{\sqrt 3 AB}}{3}:\frac{{2\sqrt 3 }}{3}AB = \frac{1}{2}\].

Suy ra \[AD = \frac{1}{2}CD = \frac{1}{2} \cdot 6x = 3x\,\,({\rm{m}}).\]

Vậy thời gian để xe máy chạy từ \[D\] đến tòa nhà là \[\frac{{3x}}{x} = 3\] (phút).

Đáp án: 3.

Câu 4

A. \(10,06\,\,{\mathop{\rm m}\nolimits} .\)       
B. \(10,069\,\,{\mathop{\rm m}\nolimits} .\)           
C. \(10,07\,\,{\mathop{\rm m}\nolimits} .\)             
D. \(10,7\,\,{\mathop{\rm m}\nolimits} .\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(20\sqrt 3 \,\,{\rm{m}}.\)                     
B. \(10\sqrt 3 \,\,{\rm{m}}.\)        
C. \(10\sqrt 6 \,\,{\rm{m}}.\)           
D. \(20\sqrt 6 \,\,{\rm{m}}{\rm{.}}\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP