Câu hỏi:

24/10/2025 12 Lưu

Trong một kì thi, có 60% học sinh đã làm đúng bài toán đầu tiên và 40% học sinh đã làm đúng bài toán thứ hai. Biết rằng có 20% học sinh làm đúng cả hai bài toán. Xác suất để một học sinh làm đúng bài toán thứ hai biết rằng học sinh đó đã làm đúng bài toán đầu tiên là bao nhiêu?

A. 0,5.                          
B. 0,333.                      
C. 0,2.                              
D. 0,667.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn B

 Gọi A là biến cố: “Học sinh làm đúng bài đầu tiên”;

B là biến cố: “Học sinh làm đúng bài thứ hai”.

Theo đề ta có P(A) = 0,6; P(B) = 0,4; P(AB) = 0,2.

Cần tính \(P\left( {B|A} \right) = \frac{{P\left( {AB} \right)}}{{P\left( A \right)}} = \frac{{0,2}}{{0,6}} \approx 0,333\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Theo đề ta có \[P\left( A \right) = 0,4;P\left( B \right) = 0,5;P\left( {AB} \right) = 0,3\].

a) Vì \(P\left( A \right).P\left( B \right) \ne P\left( {AB} \right)\) nên A, B là hai biến cố không độc lập.

b) \(P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {AB} \right) = 0,4 + 0,5 - 0,3 = 0,6\).

c) \(P\left( {B|A} \right) = \frac{{P\left( {AB} \right)}}{{P\left( A \right)}} = \frac{{0,3}}{{0,4}} = 0,75\).

d) C là biến cố “Công ty thắng thầu đúng 1 dự án”.

Khi đó \(C = A\overline B  \cup \overline A B\).

Có \(P\left( {A\overline B } \right) = P\left( A \right) - P\left( {AB} \right) = 0,4 - 0,3 = 0,1\).

\(P\left( {\overline A B} \right) = P\left( B \right) - P\left( {AB} \right) = 0,5 - 0,3 = 0,2\).

Suy ra \(P\left( C \right) = P\left( {A\overline B } \right) + P\left( {\overline A B} \right) = 0,1 + 0,2 = 0,3\).

Đáp án: a) Sai;   b) Đúng;   c) Đúng;   d) Sai.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP