Để được chọn vào đội tuyển học sinh giỏi môn Toán cấp thành phố, mỗi thí sinh phải vượt qua hai vòng thi. Bạn Hà tham dự cuộc tuyển chọn này. Xác suất để Hà qua được vòng thứ nhất là 0,8. Nếu qua được vòng thứ nhất thì xác suất để Hà qua được vòng thứ hai là 0,7. Xác suất để bạn Hà được chọn vào đội tuyển này là
Quảng cáo
Trả lời:
Chọn C
Gọi A là biến cố “Hà qua được vòng thứ nhất”; B là biến cố “Hà qua được vòng thứ hai”.
AB là biến cố “Hà được chọn vào đội tuyển”.
Ta có \(P\left( {AB} \right) = P\left( A \right).P\left( {B|A} \right) = 0,8.0,7 = 0,56\).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Chọn A
Gọi E là biến cố “Cây chọn được là cây Táo”, F là biến cố “Cậy chọn được ở khu B”.
Ta có \(P\left( {E|F} \right) = \frac{{100}}{{200}} = \frac{1}{2}\).
Lời giải
Chọn C
Gọi A là biến cố “Trẻ em đó thường xuyên sử dụng máy tính”;
B là biến cố “Trẻ em đó bị cận thị”.
Ta có \(P\left( A \right) = 0,1;P\left( B \right) = 0,3\); \(P\left( {B|A} \right) = 0,54\).
Ta có \(P\left( {AB} \right) = P\left( A \right).P\left( {B|A} \right) = 0,1.0,54 = 0,054\).
Ta có \(P\left( {A|B} \right) = \frac{{P\left( {AB} \right)}}{{P\left( B \right)}} = \frac{{0,054}}{{0,3}} = 0,18\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.