Câu hỏi:

26/10/2025 19 Lưu

Phần II. Câu trắc nghiệm đúng sai. Trong mỗi ý a), b), c), d) ở mỗi câu, chọn đúng hoặc sai.

Cho hình chóp \[S.ABCD\] có đáy \[ABCD\] là hình vuông, \(SA\)vuông góc với mặt phẳng \((ABCD)\). Gọi \[I,J\] lần lượt là trung điểm của \[SA,SC\]. \[G\]là trọng tâm tam giác \[SBD\].

Cho hình chóp \[S.ABCD\] có đáy \[ABCD\]  là h (ảnh 1)

a) \(\overrightarrow {AC} - \overrightarrow {AB} = \overrightarrow {AD} \).

b)  \(\overrightarrow {AS} + \overrightarrow {AB} + \overrightarrow {AD} = \overrightarrow {AG} \).

c)  \[\overrightarrow {{\rm{IJ}}} .\overrightarrow {BD} = \overrightarrow 0 \].

d) \({\overrightarrow {AG} ^2} = {\overrightarrow {AS} ^2} + {\overrightarrow {AB} ^2} + {\overrightarrow {AD} ^2}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Ta có \[ABCD\] là hình vuông nên \(\overrightarrow {AC} = \overrightarrow {AB} + \overrightarrow {AD} \) ( qui tắc hình bình hành)

suy ra\(\overrightarrow {AC} - \overrightarrow {AB} = \overrightarrow {AD} \).

b) Do \[G\]là trọng tâm tam giác \[SBD\] nên

\(\overrightarrow {GS} + \overrightarrow {GB} + \overrightarrow {GD} = \overrightarrow 0 \Rightarrow \left( {\overrightarrow {GA} + \overrightarrow {AS} } \right) + \left( {\overrightarrow {GA} + \overrightarrow {AB} } \right) + \left( {\overrightarrow {GA} + \overrightarrow {AD} } \right) = \overrightarrow 0 \)

\( \Rightarrow \overrightarrow {AS} + \overrightarrow {AB} + \overrightarrow {AD} = 3\overrightarrow {AG} .\)

c) Ta có \[ABCD\] là hình vuông nên \(AC \bot BD \Rightarrow \overrightarrow {AC} .\overrightarrow {BD} = 0 \Rightarrow 2\overrightarrow {{\rm{IJ}}} .\overrightarrow {BD} = 0 \Rightarrow \overrightarrow {{\rm{IJ}}} .\overrightarrow {BD} = 0\) .

\[\overrightarrow 0 \ne 0\] nên mệnh đề sai.

d) Do \[G\]là trọng tâm tam giác \[SBD\] nên \(\overrightarrow {AS} + \overrightarrow {AB} + \overrightarrow {AD} = 3\overrightarrow {AG} \)

\({\left( {3\overrightarrow {AG} } \right)^2} = {\left( {\overrightarrow {AS} + \overrightarrow {AB} + \overrightarrow {AD} } \right)^2} \Rightarrow 9A{G^2} = A{S^2} + A{B^2} + A{D^2} + 2\overrightarrow {AS} \overrightarrow {AB} + 2\overrightarrow {AS} \overrightarrow {AD} + 2\overrightarrow {AD} \overrightarrow {AB} \;\left( 1 \right)\)

\(SA\)vuông góc với mặt phẳng \((ABCD)\) nên\(\left\{ \begin{array}{l}SA \bot AB\\SA \bot AD\end{array} \right. \Rightarrow \left\{ \begin{array}{l}\overrightarrow {SA} .\overrightarrow {AD} = 0\\\overrightarrow {SA} .\overrightarrow {AB} = 0\end{array} \right.\;\left( 2 \right)\)

 \[ABCD\] là hình vuông nên \(\overrightarrow {AB} .\overrightarrow {AD} = 0\left( 3 \right)\) .

Từ \[\left( 1 \right);\left( 2 \right);\left( 3 \right)\] ta được \(9A{G^2} = A{S^2} + A{B^2} + A{D^2}.\)

Đáp án: a) Đúng;   b) Sai;   c) Sai;   d) Sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Có \(OADB\) là hình bình hành nên \(\overrightarrow {BO} + \overrightarrow {BD} = \overrightarrow {BA} \) (quy tắc hình bình hành).

b) Có \(\overrightarrow {OA} + \overrightarrow {OB} = \overrightarrow {OD} ;\overrightarrow {OC} + \overrightarrow {OD} = \overrightarrow {OE} \).

Do đó \(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} = \overrightarrow {OE} \).

c) Vì \(OADB\) là hình bình hành và \(\widehat {BOA} = 120^\circ \Rightarrow \widehat {OBD} = 60^\circ \).

Xét \(\Delta OBD\)\(OD = \sqrt {O{B^2} + B{D^2} - 2.OB.BD.\cos 60^\circ } = \sqrt {{{24}^2} + {{12}^2} - 2.24.12.\cos 60^\circ } = 12\sqrt 3 \) N.

d) Ta có \(\Delta OCE\) vuông tại \(C\), ta có \(OE = \sqrt {O{C^2} + C{E^2}} = \sqrt {{6^2} + {{\left( {12\sqrt 3 } \right)}^2}} = 6\sqrt {13} \) N.

Đáp án: a) Sai;   b) Đúng;   c) Sai;   d) Đúng.

Lời giải

Cho tứ diện đều \(ABCD\) có độ dài cạnh bằng 1, gọi \(M\) là trung điểm cạnh \(CD\). Tích vô hướng \(\overrightarrow {AB} .\overrightarrow {AM} \) bằng bao nhiêu? (ảnh 1)

\(ABCD\) là tứ diện đều cạnh bằng 1 nên \(BM = AM = \frac{{\sqrt 3 }}{2}\).Xét \(\Delta ABM\)\(\cos \widehat {BAM} = \frac{{A{B^2} + A{M^2} - B{M^2}}}{{2.AB.AM}} = \frac{{{1^2} + {{\left( {\frac{{\sqrt 3 }}{2}} \right)}^2} - {{\left( {\frac{{\sqrt 3 }}{2}} \right)}^2}}}{{2.1.\frac{{\sqrt 3 }}{2}}} = \frac{1}{{\sqrt 3 }}\).\(\overrightarrow {AB} .\overrightarrow {AM} = \left| {\overrightarrow {AB} } \right|.\left| {\overrightarrow {AM} } \right|.\cos \left( {\overrightarrow {AB} ,\overrightarrow {AM} } \right) = \left| {\overrightarrow {AB} } \right|.\left| {\overrightarrow {AM} } \right|.\cos \widehat {BAM} = 1.\frac{{\sqrt 3 }}{2}.\frac{1}{{\sqrt 3 }} = 0,5\).

Trả lời: 0,5.

Câu 3

A. \(30^\circ \).               
B. \(45^\circ \).               
C. \(60^\circ \).                    
D. \(90^\circ \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[\overrightarrow {NM} \].                               
B. \[\overrightarrow {MN} \].                                         
C.\[\overrightarrow {NP} \].                                     
D. \[\overrightarrow {PN} \].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP