Tại một cơ sở sản xuất nước tinh khiết, nhân viên phụ trách sản xuất cho biết, nếu mỗi ngày cơ sở này sản xuất \(x\,\,\left( {{{\rm{m}}^{\rm{3}}}} \right)\) nước tinh khiết thì phải chi phí các khoản sau: 5 triệu đồng chi phí cố định; \(0,15\) triệu đồng cho mỗi mét khối sản phẩm; \(0,0005{x^2}\)chi phí bảo dưỡng máy móc. Biết công suất tối đa mỗi ngày của cơ sở này là \(200\;{{\rm{m}}^{\rm{3}}}\). Gọi \(C\left( x \right)\) là chi phí sản suất \(x\,\,\left( {{{\rm{m}}^{\rm{3}}}} \right)\) sản phẩm mỗi ngày và \(\overline c \left( x \right)\)là chi phí trung bình mỗi mét khối sản phẩm.
a) \(C\left( x \right) = 0,0005{x^2} + 0,15x + 5\).
b) Chi phí sản suất \(100{{\rm{m}}^{\rm{3}}}\) nước tinh khiết là 20 triệu đồng.
c) \(\overline c \left( x \right) = 0,0005x + 0,15 + \frac{5}{x}\).
d) Chi phí trung bình giảm xuống khi sản lượng nước tính khiết trong ngày không vượt quá \({\rm{100}}\;{{\rm{m}}^3}.\)
Tại một cơ sở sản xuất nước tinh khiết, nhân viên phụ trách sản xuất cho biết, nếu mỗi ngày cơ sở này sản xuất \(x\,\,\left( {{{\rm{m}}^{\rm{3}}}} \right)\) nước tinh khiết thì phải chi phí các khoản sau: 5 triệu đồng chi phí cố định; \(0,15\) triệu đồng cho mỗi mét khối sản phẩm; \(0,0005{x^2}\)chi phí bảo dưỡng máy móc. Biết công suất tối đa mỗi ngày của cơ sở này là \(200\;{{\rm{m}}^{\rm{3}}}\). Gọi \(C\left( x \right)\) là chi phí sản suất \(x\,\,\left( {{{\rm{m}}^{\rm{3}}}} \right)\) sản phẩm mỗi ngày và \(\overline c \left( x \right)\)là chi phí trung bình mỗi mét khối sản phẩm.
a) \(C\left( x \right) = 0,0005{x^2} + 0,15x + 5\).
b) Chi phí sản suất \(100{{\rm{m}}^{\rm{3}}}\) nước tinh khiết là 20 triệu đồng.
c) \(\overline c \left( x \right) = 0,0005x + 0,15 + \frac{5}{x}\).
d) Chi phí trung bình giảm xuống khi sản lượng nước tính khiết trong ngày không vượt quá \({\rm{100}}\;{{\rm{m}}^3}.\)
Quảng cáo
Trả lời:
a) Chi phí mỗi ngày là tổng các chi phí nên \(C\left( x \right) = 0,0005{x^2} + 0,15x + 5\) (triệu đồng).
b) Khi \(x = 100\), ta có \(C\left( {100} \right) = 0,0005 \times {100^2} + 0,15 \times 100 + 5 = 25\).
c) Chi phí trung bình trên mỗi khối sản phẩm là:
\(\overline c \left( x \right) = \frac{{0,0005{x^2} + 0,15x + 5}}{x} = 0,0005x + 0,15 + \frac{5}{x}\).
d) Xét hàm số \(\overline c \left( x \right) = 0,0005x + 0,15 + \frac{5}{x}\), \(0 < x \le 200\).
Ta có \({\overline c ^{\,\prime }}\left( x \right) = \frac{5}{{{{10}^4}}} - \frac{5}{{{x^2}}}\), \({\overline c ^\prime }\left( x \right) = 0 \Leftrightarrow {x^2} = {10^4} \Rightarrow x = 100\) (do \(x \in \left( {0;200} \right]\))
Bảng biến thiên:

Vậy chi phí trung bình giảm khi hàm số \(\overline c \left( x \right)\)nghịch biến, tức là \(x \in \left( {0;100} \right)\).
Đáp án: a) Đúng; b) Sai; c) Đúng; d) Đúng.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Số tiền thu về khi bán \(x\) mét vải lụa là: \(220x\).
Lợi nhuận thu được khi bán \(x\) mét vải lụa là:
\(L\left( x \right) = 220x - \left( {{x^3} - 3{x^2} - 20x + 500} \right) = - {x^3} + 3{x^2} + 240x - 500\).
Xét hàm số \(L\left( x \right) = - {x^3} + 3{x^2} + 240x - 500\) với \(x \in \left[ {1;18} \right]\)
\(L'\left( x \right) = - 3{x^2} + 6x + 240 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 10 \in [1;18]\\x = - 8 \notin [1;18]\end{array} \right.\)\(\)
Bảng biến thiên:

Vậy hộ làm nghề dệt này thu được lợi nhuận tối đa trong một ngày là \(1200\) nghìn đồng khi sản xuất \(10\) mét vải lụa trong một ngày.
Trả lời: 1200.
Câu 2
Lời giải

Gọi chiều rộng, chiều dài, chiều cao của bể lần lượt là \(x,\,2x,\,y\,\left( {x,\,y > 0} \right)\).
Diện tích phần lắp kính là
\(2x.x + 2xy + 2.2x.y = 2{x^2} + 6xy = 8\, \Leftrightarrow \,xy = \frac{{8 - 2{x^2}}}{6} > 0\) \( \Rightarrow \,x < \sqrt {\frac{8}{2}} = \sqrt 4 = 2\).
Thể tích bể cá là: \(V = 2x.x.y = 2x.\frac{{8 - 2{x^2}}}{6} = \frac{{ - 4{x^3} + 16x}}{6}\) với \(0 < x < 2\).
Ta có: \(V' = \frac{{ - 12{x^2} + 16}}{6},\,V' = 0 \Leftrightarrow \left[ \begin{array}{l}x = \frac{2}{{\sqrt 3 }}\\x = - \frac{2}{{\sqrt 3 }}\,\,\left( L \right)\end{array} \right.\)

\( \Rightarrow \,{V_{\max }} = V\left( {\frac{2}{{\sqrt 3 }}} \right) \approx \,2,05\,{{\rm{m}}^{\rm{3}}}\). Chọn A.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.