Câu hỏi:

26/10/2025 5 Lưu

Một chất điểm chuyển động theo phương trình \(s\left( t \right) = - {t^3} + 6{t^2} + t + 3\), trong đó \(t\) tính bằng giây kể từ lúc chất điểm bắt đầu chuyển động và \(s\) tính bằng mét. Tính quãng đường chất điểm đi được kể từ lúc bắt đầu chuyển động đến khi chất điểm có vận tốc tức thời lớn nhất.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có \(v\left( t \right) = s'\left( t \right) = - 3{t^2} + 12t + 1\).

Ta có \(v'\left( t \right) = - 6t + 12 = 0 \Leftrightarrow t = 2\).

Bảng biến thiên

Một chất điểm chuyển động theo phương trình \(s\left( t \right) =  - {t^3} + 6{t^2} + t + 3\), trong đó \(t\) tính bằng giây kể từ lúc chất đ (ảnh 1)

Chất điểm đạt vận tốc lớn nhất tại \(t = 2\).

Khi đó \(s\left( 2 \right) = - {2^3} + {6.2^2} + 2 + 3 = 21\).

Trả lời: 21.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \[\mathop {\min }\limits_\mathbb{R} f\left( x \right) = - \frac{{{e^5}}}{2}\].                                                 
B. \[\mathop {\min }\limits_\mathbb{R} f\left( x \right) = \frac{{{e^5}}}{2}\].                 
C. \[\mathop {\min }\limits_\mathbb{R} f\left( x \right) = {e^5}\].                                                                    
D. Không tồn tại.

Lời giải

Ta có: \(f'\left( x \right) = \left( {2x - 5} \right){e^{2x}}\).

\(f'\left( x \right) = 0 \Leftrightarrow x = \frac{5}{2}\).

Bảng biến thiên của hàm số:

Tìm giá trị nhỏ nhất của hàm số \(f\left( x \right) = \left( {x - 3} \right){e^{2x}}\). A. \[\mathop {\min }\limits_\mathbb{R} f\le (ảnh 1)

Vậy \(\mathop {\min }\limits_\mathbb{R} f\left( x \right) = - \frac{{{e^5}}}{2}\). Chọn A.

Lời giải

Từ đồ thị ta có: \[\left\{ \begin{array}{l}m = \mathop {\min }\limits_{\left[ { - 1;3} \right]} f\left( x \right) = f\left( { - 2} \right) = - 4\\M = \mathop {\max }\limits_{\left[ { - 1;3} \right]} f\left( x \right) = f\left( { - 1} \right) = 2\end{array} \right. \Rightarrow M + m = - 2\]. Chọn D.

Câu 3

A. \(x = 5\).                     
B. \(x = 2\).                     
C. \(x = 1\).                                    
D. \(x = 4\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(\mathop {\max }\limits_{\left[ {1;3} \right]} f\left( x \right) = 0\).                                                           
B. \(\mathop {\max }\limits_{\left[ {1;3} \right]} f\left( x \right) = \frac{{13}}{{27}}\).      
C. \(\mathop {\max }\limits_{\left[ {1;3} \right]} f\left( x \right) = - 6\).                                                         
D. \(\mathop {\max }\limits_{\left[ {1;3} \right]} f\left( x \right) = 5\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[89\left( {{\rm{m/s}}} \right).\]                        
B. \[71\left( {{\rm{m/s}}} \right).\]    
C. \[109\left( {{\rm{m/s}}} \right).\]                          
D. \[\frac{{25}}{3}\left( {{\rm{m/s}}} \right)\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(3\,\)(km/h).               

B. \(160\,\)(km/h).           
C. \(130\,\)(km/h).                
D. \(70\,\)(km/h).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP