Câu hỏi:

26/10/2025 168 Lưu

Tìm tất cả các giá thực của tham số \(m\) sao cho hàm số \(y = 2{x^3} - 3{x^2} - 6mx + m\) nghịch biến trên khoảng \(\left( { - 1;\,1} \right)\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có \(y' = 6{x^2} - 6x - 6m\).

Hàm số nghịch biến trên khoảng \(\left( { - 1;\,1} \right)\) khi và chỉ khi \(y' \le 0\) với \(\forall x \in \left( { - 1;\,1} \right)\) hay \(m \ge {x^2} - x\) với \(\forall x \in \left( { - 1;\,1} \right)\).

Xét \(f\left( x \right) = {x^2} - x\) trên khoảng \(\left( { - 1;\,1} \right)\) ta có \(f'\left( x \right) = 2x - 1\); \(f'\left( x \right) = 0 \Leftrightarrow x = \frac{1}{2}\).

Bảng biến thiên

Tìm tất cả các giá thực của tham số \(m\) sao cho hàm số \(y = 2{x^3} - 3{x^2} - 6mx + m\) nghịch biến trên khoảng \(\left( { - 1;\,1} \right)\). (ảnh 1)

Dựa vào bảng biến thiên ta có \(m \ge f\left( x \right)\)với \[\forall x \in \left( { - 1;\,1} \right)\]\( \Leftrightarrow m \ge 2\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có bảng sau:

Nhóm

Giá trị đại diện

Tần số

\(\left[ {30;40} \right)\)

35

5

\(\left[ {40;50} \right)\)

45

8

\(\left[ {50;60} \right)\)

55

25

\(\left[ {60;70} \right)\)

65

20

\(\left[ {70;80} \right)\)

75

2

 

 

\(n = 60\)

a) Số trung bình cộng của mẫu số liệu trên là:

\(\overline x = \frac{{35.5 + 45.8 + 55.25 + 65.20 + 75.2}}{{60}} = 56\)(nghìn đồng).

b) Khoảng biến thiên của mẫu số liệu trên là: \(80 - 30 = 50\)(nghìn đồng).

c) Nhóm chứa tứ phân vị thứ nhất là \(\left[ {50;60} \right)\).

Tứ phân vị thứ nhất của mẫu số liệu là: \({Q_1} = 50 + \frac{{\frac{{60}}{4} - 13}}{{25}}.10 = 50,8\)(nghìn đồng).

Nhóm chứa tứ phân vị thứ ba là \(\left[ {60;70} \right)\).

Tứ phân vị thứ ba của mẫu số liệu là: \({Q_3} = 60 + \frac{{\frac{{3.60}}{4} - 38}}{{20}}.10 = 63,5\)(nghìn đồng).

Khoảng tứ phân vị của mẫu số liệu trên là: \({\Delta _Q} = {Q_3} - {Q_1} = 63,5 - 50,8 = 12,7\)(nghìn đồng).

d) Phương sai của mẫu số liệu trên là:

\({s^2} = \frac{{5{{\left( {35 - 56} \right)}^2} + 8{{\left( {45 - 56} \right)}^2} + 25{{\left( {55 - 56} \right)}^2} + 20{{\left( {65 - 56} \right)}^2} + 2{{\left( {75 - 56} \right)}^2}}}{{60}} = \frac{{277}}{3} \approx 92,3\)(nghìn đồng).

Đáp án: a) Đúng;    b) Đúng;   c) Đúng;   c) Sai.

Lời giải

Nhóm

Giá trị đại diện

Tần số

\[\left[ {30;40} \right)\]

\[35\]

\[2\]

\[\left[ {40;50} \right)\]

\[45\]

\[10\]

\[\left[ {50;60} \right)\]

\[55\]

\[16\]

\[\left[ {60;70} \right)\]

\[65\]

\[8\]

\[\left[ {70;80} \right)\]

\[75\]

\[2\]

\[\left[ {80;90} \right)\]

\[85\]

\[2\]

 

 

\[n = 40\]

 

Số trung bình cộng của mẫu số liệu ghép nhóm là:

\[\overline x \, = \frac{{35.2 + 45.10 + 55.16 + 65.8 + 75.2 + 85.2}}{{40}} = 56\].

Độ lệch chuẩn của mẫu số liệu ghép nhóm là:

\[\begin{array}{l}s\, = \sqrt {\frac{1}{{40}}\left[ {2.{{\left( {35 - 56} \right)}^2} + 10.{{\left( {45 - 56} \right)}^2} + 16.{{\left( {55 - 56} \right)}^2} + 8.{{\left( {65 - 56} \right)}^2} + 2.{{\left( {75 - 56} \right)}^2} + 2.{{\left( {85 - 56} \right)}^2}} \right]} \\ \approx 11,4.\end{array}\]

Trả lời: 11,4.

Câu 3

A. \(s = 161,4\).               

B. \(s = 14,48\).                                                            
C. \(s = 8,2\).                   
D. \(s = 3,85\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP