Câu hỏi:

27/10/2025 29 Lưu

Để tiết kiệm năng lượng, một công ty điện lực đề xuất bán điện sinh hoạt cho dân với theo hình thức lũy tiến (bậc thang) như sau: Mỗi bậc gồm \[10\]số; bậc \[1\]từ số thứ \[1\]đến số thứ \[10\], bậc \[2\]từ số thứ \[11\]đến số \[20\], bậc \[3\]từ số thứ \[21\]đến số thứ \[30\],…. Bậc \[1\]có giá là \[800\]đồng/\[1\] số, giá của mỗi số ở bậc thứ \[n + 1\]tăng so với giá của mỗi số ở bậc thứ \[n\]\[2,5\% \]. Gia đình ông A sử dụng hết \[347\]số trong tháng \[1\], hỏi tháng \[1\]ông A phải đóngbao nhiêu tiền ? (đơn vị là đồng, kết quả được làm tròn đến hàng phần trăm).              

A.  \(x \approx 433868,89\).                         
B.  \(x \approx 402832,28\).               
C.  \(x \approx 402903,08\).                              
D. \(x \approx 415481,84\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Chọn A

Gọi \({u_1}\)là số tiền phải trả cho \[10\]số điện đầu tiên. \({u_1}\)=10. 800= 8000 (đồng)

\({u_2}\)là số tiền phải trả cho các số điện từ \[11\]đến \[20\]: \({u_2} = {u_1}(1 + 0,025)\)

\({u_{34}}\)là số tiền phải trả cho các số điện từ \[331\]đến \[340\]: \({u_{34}} = {u_1}{(1 + 0,025)^{33}}\)

Số tiền phải trả cho \[340\]số điện đầu tiên là: \({S_1} = {u_1}.\frac{{1 - {{\left( {1 + 0,025} \right)}^{34}}}}{{1 - \left( {1 + 0,025} \right)}} = 420903,08\)

Số tiền phỉ trả cho các số điện từ \[341\]đến \[347\]là: \({S_2} = 7.800{(1 + 0,025)^{34}} = 12965,80\)

Vậy tháng \[1\]gia đình ông A phải trả số tiền là: \(S = {S_1} + {S_2} = 433868,89\)(đồng).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Do chiều cao của mực nước trong kênh là \(15\,\,m\) nên ta có:

\(3\cos \left( {\frac{\pi }{{12}}t + \frac{\pi }{3}} \right) + 12 = 15 \Leftrightarrow \cos \left( {\frac{\pi }{{12}}t + \frac{\pi }{3}} \right) = 1\)\( \Leftrightarrow \frac{\pi }{{12}}t + \frac{\pi }{3} = k2\pi \)\( \Leftrightarrow t =  - 4 + 24k\).

Vì \(0 \le t \le 24 \Leftrightarrow 0 \le  - 4 + 24k \le 24 \Leftrightarrow \frac{1}{6} \le k \le \frac{7}{6}\)

Do \(k \in \mathbb{Z} \Rightarrow k = 1\). Khi đó \(t = 20\)

Lời giải

Từ đề bài ta suy ra được mỗi tháng bạn Vân trích ra \(4.30\%  = 1,2\)triệu đồng để gửi tiết kiệm.

Tháng 9/2023 bạn Vân gửi 1,2 triệu đồng với lãi suất 0,4% mỗi tháng thì đến hết tháng 8/2025 thì số tiền bạn nhận được là: \({u_{24}} = 1,2{(1 + 0,004)^{24}}\).

Tháng 10/2023 bạn Vân gửi 1,2 triệu đồng với lãi suất 0,4% mỗi tháng thì đến hết tháng 8/2025 thì số tiền bạn nhận được là: \({u_{23}} = 1,2{(1 + 0,004)^{23}}\).

Tháng 8/2025 bạn Vân gửi 1,2 triệu đồng với lãi suất 0,4% mỗi tháng thì đến hết tháng 8/2025 thì số tiền bạn nhận được là: \({u_1} = 1,2(1 + 0,004) = 1,2048\).

Số tiền bạn Vân nhận được khi gửi tiết kiệm như thế tạo thành một cấp số nhân với \({u_1} = 1,2(1 + 0,004) = 1,2048;q = 1,004\).

Vậy tổng số tiền bạn Vân nhận được chính là tổng 24 số hạng đầu của một cấp số nhân ở trên.

\({S_{24}} = \frac{{{u_1}(1 - {q^{24}})}}{{1 - q}} = \frac{{1,2048(1 - 1,{{004}^{24}})}}{{1 - 1,004}} \simeq 30,285148\)(đồng).

Vậy số tiền bạn Vân nhận được đến hết tháng 8/2025 là 30.285.148 đồng.

Câu 3

A. \({u_n} = n{u_1} + d\).                            
B. \({u_n} = {u_1} + nd\).              
C. \({u_n} = {u_1} + \left( {n - 1} \right)d\).      
D. \({u_n} = {u_1} + \left( {n + 1} \right)d\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(MN\)\(BD\). 
B. \(MP\)\(AC\).   
C. \(PN\)\(BD\).                                  
D. \(AP\)\(CM\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[\cot 2x = \frac{{{{\cot }^2}x - 1}}{{2\cot x}}\].  
B. \[\cos 3x = 4{\cos ^3}x - 3\cos x\].              
C.  \[\tan 2x = \frac{{2\tan x}}{{1 + {{\tan }^2}x}}\].              
D.  \[\sin 3x = 3\sin x - 4{\sin ^3}x\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[SC\].                                                        
B. đường thẳng qua \(G\) và cắt \(BC\).              
C. đường thẳng qua \(S\) và song song với \(AB\).              
D. đường thẳng qua \(G\) và song song với \(DC\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP