Câu hỏi:

27/10/2025 2,011 Lưu

Để tiết kiệm năng lượng, một công ty điện lực đề xuất bán điện sinh hoạt cho dân với theo hình thức lũy tiến (bậc thang) như sau: Mỗi bậc gồm \[10\]số; bậc \[1\]từ số thứ \[1\]đến số thứ \[10\], bậc \[2\]từ số thứ \[11\]đến số \[20\], bậc \[3\]từ số thứ \[21\]đến số thứ \[30\],…. Bậc \[1\]có giá là \[800\]đồng/\[1\] số, giá của mỗi số ở bậc thứ \[n + 1\]tăng so với giá của mỗi số ở bậc thứ \[n\]\[2,5\% \]. Gia đình ông A sử dụng hết \[347\]số trong tháng \[1\], hỏi tháng \[1\]ông A phải đóngbao nhiêu tiền ? (đơn vị là đồng, kết quả được làm tròn đến hàng phần trăm).              

A.  \(x \approx 433868,89\).                         
B.  \(x \approx 402832,28\).               
C.  \(x \approx 402903,08\).                              
D. \(x \approx 415481,84\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Chọn A

Gọi \({u_1}\)là số tiền phải trả cho \[10\]số điện đầu tiên. \({u_1}\)=10. 800= 8000 (đồng)

\({u_2}\)là số tiền phải trả cho các số điện từ \[11\]đến \[20\]: \({u_2} = {u_1}(1 + 0,025)\)

\({u_{34}}\)là số tiền phải trả cho các số điện từ \[331\]đến \[340\]: \({u_{34}} = {u_1}{(1 + 0,025)^{33}}\)

Số tiền phải trả cho \[340\]số điện đầu tiên là: \({S_1} = {u_1}.\frac{{1 - {{\left( {1 + 0,025} \right)}^{34}}}}{{1 - \left( {1 + 0,025} \right)}} = 420903,08\)

Số tiền phỉ trả cho các số điện từ \[341\]đến \[347\]là: \({S_2} = 7.800{(1 + 0,025)^{34}} = 12965,80\)

Vậy tháng \[1\]gia đình ông A phải trả số tiền là: \(S = {S_1} + {S_2} = 433868,89\)(đồng).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

 Cho hình chóp S.ABC có hai điểm M,N lần lượt thuộc hai cạnh SA;SB và O là điểm nằm trong tam giác ABC. Xác định giao điểm của đường thẳng SO và mặt phẳng (CMN) (ảnh 1)

Chọn mặt phẳng \(\left( {SCI} \right)\) chứa \(SO\)

Ta có \(\left\{ \begin{array}{l}J \in MN \subset \left( {MNC} \right)\\J \in SI \subset \left( {SIC} \right)\end{array} \right.\) \( \Rightarrow J \in \left( {SIC} \right) \cap \left( {MNC} \right)\) \( \Rightarrow CJ = \left( {SIC} \right) \cap \left( {MNC} \right)\)

Gọi \(K\) là giao điểm của \(JC\) và \(SO\) trong mặt phẳng \(\left( {SCI} \right)\).

\( \Rightarrow \left\{ \begin{array}{l}K \in SO\\K \in CJ \subset \left( {CMN} \right)\end{array} \right.\)\( \Rightarrow K = SO \cap \left( {CMN} \right)\).

Lời giải

a)

S

b)

S

c)

Đ

d)

Đ

 Để giải phương trình, ta có:

\(3 - \sqrt 3 \tan \left( {2x - \frac{\pi }{3}} \right) = 0\)

\(\sqrt 3 \tan \left( {2x - \frac{\pi }{3}} \right) = 3\)

\(\tan \left( {2x - \frac{\pi }{3}} \right) = \frac{3}{{\sqrt 3 }}\)

\(\tan \left( {2x - \frac{\pi }{3}} \right) = \sqrt 3 \)

Vì \(\tan \left( {\frac{\pi }{3}} \right) = \sqrt 3 \), suy ra:

\(2x - \frac{\pi }{3} = \frac{\pi }{3} + k\pi \), với \(k \in \mathbb{Z}\)

\(2x = \frac{{2\pi }}{3} + k\pi \)

\(x = \frac{\pi }{3} + k\frac{\pi }{2}\), với \(k \in \mathbb{Z}\)

(Sai) Phương trình có nghiệm \(x = \frac{\pi }{6} + k\frac{\pi }{2}\), \(k \in \mathbb{Z}\)

(Vì): Nghiệm tổng quát của phương trình là \(x = \frac{\pi }{3} + k\frac{\pi }{2}\), \(k \in \mathbb{Z}\), nên khẳng định \(x = \frac{\pi }{6} + k\frac{\pi }{2}\) là sai.

(Đúng) Phương trình có nghiệm âm lớn nhất bằng \( - \frac{\pi }{6}\)

(Vì): Nghiệm tổng quát là \(x = \frac{\pi }{3} + k\frac{\pi }{2}\). Với \(k =  - 1\), ta có \(x = \frac{\pi }{3} - \frac{\pi }{2} =  - \frac{\pi }{6}\). Với \(k \le  - 2\), các nghiệm sẽ nhỏ hơn \( - \frac{\pi }{6}\). Vậy nghiệm âm lớn nhất là \( - \frac{\pi }{6}\).

(Sai) Khi \( - \frac{\pi }{4} < x < \frac{{2\pi }}{3}\) thì phương trình có \(3\) nghiệm

(Vì): Trong khoảng \(\left( { - \frac{\pi }{4};\frac{{2\pi }}{3}} \right)\), phương trình có các nghiệm là \(x =  - \frac{\pi }{6}\) (ứng với \(k =  - 1\)) và \(x = \frac{\pi }{3}\) (ứng với \(k = 0\)). Vậy chỉ có \(2\) nghiệm, nên khẳng định trên là sai.

(Đúng) Tổng các nghiệm của phương trình trong khoảng \(\left( { - \frac{\pi }{4};\frac{{2\pi }}{3}} \right)\) bằng \(\frac{\pi }{6}\)

(Vì): Các nghiệm trong khoảng \(\left( { - \frac{\pi }{4};\frac{{2\pi }}{3}} \right)\) là \({x_1} =  - \frac{\pi }{6}\) và \({x_2} = \frac{\pi }{3}\). Tổng của chúng là \({x_1} + {x_2} =  - \frac{\pi }{6} + \frac{\pi }{3} = \frac{\pi }{6}\). Khẳng định này là đúng.