Câu hỏi:

27/10/2025 261 Lưu

PHẦN III. Câu trắc nghiệm trả lời ngắn. Thí sinh trả lời từ câu 1 đến câu 2.

Hằng ngày, mực nước của con kênh lên xuống theo thủy triều. Độ sâu \(h(m)\)của mực nước trong kênh tính theo thời gian \(t(h)\) được cho bởi công thức \(h = 3\cos \left( {\frac{{\pi t}}{{12}} + \frac{\pi }{3}} \right) + 12\).\(\left( {0\, \le \,t\, \le \,24} \right)\). Xác định thời điểm trong ngày khi chiều cao của mực nước trong kênh là \(15\,\,m\).
Hằng ngày, mực nước của con kênh lên xuống theo thủy triề (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Do chiều cao của mực nước trong kênh là \(15\,\,m\) nên ta có:

\(3\cos \left( {\frac{\pi }{{12}}t + \frac{\pi }{3}} \right) + 12 = 15 \Leftrightarrow \cos \left( {\frac{\pi }{{12}}t + \frac{\pi }{3}} \right) = 1\)\( \Leftrightarrow \frac{\pi }{{12}}t + \frac{\pi }{3} = k2\pi \)\( \Leftrightarrow t =  - 4 + 24k\).

Vì \(0 \le t \le 24 \Leftrightarrow 0 \le  - 4 + 24k \le 24 \Leftrightarrow \frac{1}{6} \le k \le \frac{7}{6}\)

Do \(k \in \mathbb{Z} \Rightarrow k = 1\). Khi đó \(t = 20\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn A

Gọi \({u_1}\)là số tiền phải trả cho \[10\]số điện đầu tiên. \({u_1}\)=10. 800= 8000 (đồng)

\({u_2}\)là số tiền phải trả cho các số điện từ \[11\]đến \[20\]: \({u_2} = {u_1}(1 + 0,025)\)

\({u_{34}}\)là số tiền phải trả cho các số điện từ \[331\]đến \[340\]: \({u_{34}} = {u_1}{(1 + 0,025)^{33}}\)

Số tiền phải trả cho \[340\]số điện đầu tiên là: \({S_1} = {u_1}.\frac{{1 - {{\left( {1 + 0,025} \right)}^{34}}}}{{1 - \left( {1 + 0,025} \right)}} = 420903,08\)

Số tiền phỉ trả cho các số điện từ \[341\]đến \[347\]là: \({S_2} = 7.800{(1 + 0,025)^{34}} = 12965,80\)

Vậy tháng \[1\]gia đình ông A phải trả số tiền là: \(S = {S_1} + {S_2} = 433868,89\)(đồng).

Lời giải

 Cho hình chóp S.ABC có hai điểm M,N lần lượt thuộc hai cạnh SA;SB và O là điểm nằm trong tam giác ABC. Xác định giao điểm của đường thẳng SO và mặt phẳng (CMN) (ảnh 1)

Chọn mặt phẳng \(\left( {SCI} \right)\) chứa \(SO\)

Ta có \(\left\{ \begin{array}{l}J \in MN \subset \left( {MNC} \right)\\J \in SI \subset \left( {SIC} \right)\end{array} \right.\) \( \Rightarrow J \in \left( {SIC} \right) \cap \left( {MNC} \right)\) \( \Rightarrow CJ = \left( {SIC} \right) \cap \left( {MNC} \right)\)

Gọi \(K\) là giao điểm của \(JC\) và \(SO\) trong mặt phẳng \(\left( {SCI} \right)\).

\( \Rightarrow \left\{ \begin{array}{l}K \in SO\\K \in CJ \subset \left( {CMN} \right)\end{array} \right.\)\( \Rightarrow K = SO \cap \left( {CMN} \right)\).