Câu hỏi:

27/10/2025 36 Lưu

PHẦN III. Câu trắc nghiệm trả lời ngắn. Thí sinh trả lời từ câu 1 đến câu 2.

Hằng ngày, mực nước của con kênh lên xuống theo thủy triều. Độ sâu \(h(m)\)của mực nước trong kênh tính theo thời gian \(t(h)\) được cho bởi công thức \(h = 3\cos \left( {\frac{{\pi t}}{{12}} + \frac{\pi }{3}} \right) + 12\).\(\left( {0\, \le \,t\, \le \,24} \right)\). Xác định thời điểm trong ngày khi chiều cao của mực nước trong kênh là \(15\,\,m\).
Hằng ngày, mực nước của con kênh lên xuống theo thủy triề (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Do chiều cao của mực nước trong kênh là \(15\,\,m\) nên ta có:

\(3\cos \left( {\frac{\pi }{{12}}t + \frac{\pi }{3}} \right) + 12 = 15 \Leftrightarrow \cos \left( {\frac{\pi }{{12}}t + \frac{\pi }{3}} \right) = 1\)\( \Leftrightarrow \frac{\pi }{{12}}t + \frac{\pi }{3} = k2\pi \)\( \Leftrightarrow t =  - 4 + 24k\).

Vì \(0 \le t \le 24 \Leftrightarrow 0 \le  - 4 + 24k \le 24 \Leftrightarrow \frac{1}{6} \le k \le \frac{7}{6}\)

Do \(k \in \mathbb{Z} \Rightarrow k = 1\). Khi đó \(t = 20\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn A

Gọi \({u_1}\)là số tiền phải trả cho \[10\]số điện đầu tiên. \({u_1}\)=10. 800= 8000 (đồng)

\({u_2}\)là số tiền phải trả cho các số điện từ \[11\]đến \[20\]: \({u_2} = {u_1}(1 + 0,025)\)

\({u_{34}}\)là số tiền phải trả cho các số điện từ \[331\]đến \[340\]: \({u_{34}} = {u_1}{(1 + 0,025)^{33}}\)

Số tiền phải trả cho \[340\]số điện đầu tiên là: \({S_1} = {u_1}.\frac{{1 - {{\left( {1 + 0,025} \right)}^{34}}}}{{1 - \left( {1 + 0,025} \right)}} = 420903,08\)

Số tiền phỉ trả cho các số điện từ \[341\]đến \[347\]là: \({S_2} = 7.800{(1 + 0,025)^{34}} = 12965,80\)

Vậy tháng \[1\]gia đình ông A phải trả số tiền là: \(S = {S_1} + {S_2} = 433868,89\)(đồng).

Lời giải

Từ đề bài ta suy ra được mỗi tháng bạn Vân trích ra \(4.30\%  = 1,2\)triệu đồng để gửi tiết kiệm.

Tháng 9/2023 bạn Vân gửi 1,2 triệu đồng với lãi suất 0,4% mỗi tháng thì đến hết tháng 8/2025 thì số tiền bạn nhận được là: \({u_{24}} = 1,2{(1 + 0,004)^{24}}\).

Tháng 10/2023 bạn Vân gửi 1,2 triệu đồng với lãi suất 0,4% mỗi tháng thì đến hết tháng 8/2025 thì số tiền bạn nhận được là: \({u_{23}} = 1,2{(1 + 0,004)^{23}}\).

Tháng 8/2025 bạn Vân gửi 1,2 triệu đồng với lãi suất 0,4% mỗi tháng thì đến hết tháng 8/2025 thì số tiền bạn nhận được là: \({u_1} = 1,2(1 + 0,004) = 1,2048\).

Số tiền bạn Vân nhận được khi gửi tiết kiệm như thế tạo thành một cấp số nhân với \({u_1} = 1,2(1 + 0,004) = 1,2048;q = 1,004\).

Vậy tổng số tiền bạn Vân nhận được chính là tổng 24 số hạng đầu của một cấp số nhân ở trên.

\({S_{24}} = \frac{{{u_1}(1 - {q^{24}})}}{{1 - q}} = \frac{{1,2048(1 - 1,{{004}^{24}})}}{{1 - 1,004}} \simeq 30,285148\)(đồng).

Vậy số tiền bạn Vân nhận được đến hết tháng 8/2025 là 30.285.148 đồng.

Câu 3

A. \({u_n} = n{u_1} + d\).                            
B. \({u_n} = {u_1} + nd\).              
C. \({u_n} = {u_1} + \left( {n - 1} \right)d\).      
D. \({u_n} = {u_1} + \left( {n + 1} \right)d\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(MN\)\(BD\). 
B. \(MP\)\(AC\).   
C. \(PN\)\(BD\).                                  
D. \(AP\)\(CM\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[\cot 2x = \frac{{{{\cot }^2}x - 1}}{{2\cot x}}\].  
B. \[\cos 3x = 4{\cos ^3}x - 3\cos x\].              
C.  \[\tan 2x = \frac{{2\tan x}}{{1 + {{\tan }^2}x}}\].              
D.  \[\sin 3x = 3\sin x - 4{\sin ^3}x\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[SC\].                                                        
B. đường thẳng qua \(G\) và cắt \(BC\).              
C. đường thẳng qua \(S\) và song song với \(AB\).              
D. đường thẳng qua \(G\) và song song với \(DC\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP