Cho phương trình \(\left( {2\sin x - 1} \right)\left( {\cos x + 1} \right) = 0\). Xét tính đúng sai của các khẳng định sau.
a) \(x = \frac{\pi }{6}\)là một nghiệm của phương trình.
b) Nghiệm âm lớn nhất của phương trình là \(x = \frac{{ - 7\pi }}{6}\).
c) Phương trình có nghiệm \(\left[ {\begin{array}{*{20}{l}}{x = \frac{\pi }{6} + k2\pi }\\{x = - \frac{\pi }{6} + k2\pi }\\{x = \pi + k2\pi }\end{array}} \right.\).
d) Tổng các nghiệm của phương trình thuộc nửa khoảng \(\left[ { - 2\pi ;3\pi } \right)\) bằng \(3\pi \).
Cho phương trình \(\left( {2\sin x - 1} \right)\left( {\cos x + 1} \right) = 0\). Xét tính đúng sai của các khẳng định sau.
a) \(x = \frac{\pi }{6}\)là một nghiệm của phương trình.
b) Nghiệm âm lớn nhất của phương trình là \(x = \frac{{ - 7\pi }}{6}\).
c) Phương trình có nghiệm \(\left[ {\begin{array}{*{20}{l}}{x = \frac{\pi }{6} + k2\pi }\\{x = - \frac{\pi }{6} + k2\pi }\\{x = \pi + k2\pi }\end{array}} \right.\).
d) Tổng các nghiệm của phương trình thuộc nửa khoảng \(\left[ { - 2\pi ;3\pi } \right)\) bằng \(3\pi \).
Câu hỏi trong đề: Bộ 19 đề thi Giữa kì 1 Toán 11 có đáp án !!
Quảng cáo
Trả lời:
|
a) |
Đ |
b) |
S |
c) |
S |
d) |
Đ |
(Đúng) \(x = \frac{\pi }{6}\) là một nghiệm của phương trình
(Vì): Thay \(x = \frac{\pi }{6}\) thỏa mãn phương trình.
(Sai) Phương trình có nghiệm \(\left[ {\begin{array}{*{20}{l}}{x = \frac{\pi }{6} + k2\pi }\\{x = - \frac{\pi }{6} + k2\pi }\\{x = \pi + k2\pi }\end{array}} \right.\)
(Vì): Ta có \(\left( {2\sin x - 1} \right)\left( {\cos x + 1} \right) = 0 \Rightarrow \left[ {\begin{array}{*{20}{l}}{\sin x = \frac{1}{2}}\\{\cos x = - 1}\end{array}} \right. \Rightarrow \left[ {\begin{array}{*{20}{l}}{x = \frac{\pi }{6} + k2\pi }\\{x = \frac{{5\pi }}{6} + k2\pi }\\{x = \pi + k2\pi }\end{array}} \right.\left( {k \in \mathbb{Z}} \right)\).
(Sai) Nghiệm âm lớn nhất của phương trình là \(x = \frac{{ - 7\pi }}{6}\)
(Vì): Với \(x = \frac{\pi }{6} + k2\pi < 0 \Rightarrow k \le - 1\). Nghiệm âm lớn nhất là \(x = \frac{{ - 11\pi }}{6}\). Với \(x = \frac{{5\pi }}{6} + k2\pi < 0 \Rightarrow k \le - 1\). Nghiệm âm lớn nhất là \(x = \frac{{ - 7\pi }}{6}\). Với \(x = \pi + k2\pi < 0 \Rightarrow k \le - 1\). Nghiệm âm lớn nhất là \(x = - \pi \).
(Đúng) Tổng các nghiệm của phương trình thuộc nửa khoảng \(\left[ { - 2\pi ;3\pi } \right)\) bằng \(3\pi \)
(Vì): Theo ý trên ta thấy phương trình có nghiệm \(\left[ {\begin{array}{*{20}{l}}{x = \frac{\pi }{6} + k2\pi }\\{x = \frac{{5\pi }}{6} + k2\pi }\\{x = \pi + k2\pi }\end{array}} \right.\left( {k \in \mathbb{Z}} \right)\).
TH 1: Với \(x = \frac{\pi }{6} + k2\pi \in \left[ { - 2\pi ;3\pi } \right) \Rightarrow - 2\pi < \frac{\pi }{6} + k2\pi < 3\pi \Rightarrow - 1 \le k \le 1 \Rightarrow T = \frac{\pi }{2}\).
TH 2: \(x = \frac{{5\pi }}{6} + k2\pi \in \left[ { - 2\pi ;3\pi } \right) \Rightarrow - 2\pi \le \frac{{5\pi }}{6} + k2\pi < 3\pi \Rightarrow - 1 \le k \le 1 \Rightarrow T = \frac{{5\pi }}{2}\).
TH 3: \(x = \pi + k2\pi \in \left[ { - 2\pi ;3\pi } \right) \Rightarrow - 2\pi \le \pi + k2\pi < 3\pi \Rightarrow - 1 \le k < 1 \Rightarrow T = 0\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Ta có \(R = 60m = O{A_1}\), Suy ra trong tam giác \({A_1}O{B_1}\) ta có \({A_1}{B_1}^2 = 2O{A_1}^2 - 2O{A^2}_1.cos{120^0}\) \( \Rightarrow {A_1}{B_1}^2 = {2.60^2} + {2.60^2}.\frac{1}{2} = 10800{m^2}\)
Mà các tam giác \({A_1}{B_1}{C_1}\), \({A_2}{B_2}{C_2}\), … có độ dài các cạnh là cấp số nhân với công bội \({q_c} = \frac{1}{2}\)
Nên diện tích các tam giác \({A_1}{B_1}{C_1}\), \({A_2}{B_2}{C_2}\), … là cấp số nhân với công bội \({q_S} = \frac{1}{4}\)
\({S_1} = {S_{{A_1}{B_1}{C_1}}} = \frac{{{A_1}{B_1}^2.\sqrt 3 }}{4} = \frac{{10800\sqrt 3 }}{4} = 2700\sqrt 3 {m^2}\)
\({S_9} = {S_1}.{\left( {\frac{1}{4}} \right)^8} = 0,285{m^2}\)
Lời giải
Bác An gửi tiết kiệm vào ngân hàng 100 triệu đồng với hình thức lãi kép tức là số tiền lãi cộng vào tiền gốc và tiếp tục sinh lãi, kì hạn một năm với lãi suất \(4,7\% \)/năm. Tiền gốc và lãi hằng năm là cấp số nhân \({u_1} = 100\)triệu đồng, công bội \(q = 1 + 0,047\).
Bác An nhận được 10 năm: \({u_{11}} = 100{\left( {1 + 0,047} \right)^{10}} = 158,294\) triệu đồng
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

