Câu hỏi:

27/10/2025 12 Lưu

PHẦN IV. Câu hỏi tự luận. Thí sinh trình bày lời giải vào giấy làm bài.

Một kiến trúc sư thiết kế một hội trường với \(9\) ghế ở hàng thứ nhất, \(12\) ghế ở hàng thứ hai, \(15\) ghế ở hàng thứ ba, và cứ như vậy số ghế hàng sau hơn số ghế hàng trước là \(3\). Nếu muốn hội trường có sức chứa ít nhất \(561\) ghế ngồi thì kiến trúc sư đó phải thiết kế ít nhất bao nhiêu hàng ghế?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có số ghế mỗi hàng của hội trường lập thành cấp số cộng với \({u_1} = 9\) và công sai \(d = 3\).

Theo đề bài ta có \(n \cdot 9 + \frac{{n \cdot (n - 1) \cdot 3}}{2} \ge 561 \Leftrightarrow n \ge 17.\)

Vậy phải cần ít nhất \(17\) hàng ghế để thỏa mãn sức chứa ít nhất \(561\) ghế ngồi

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn C

Ta có \(R = 60m = O{A_1}\), Suy ra trong tam giác \({A_1}O{B_1}\) ta có \({A_1}{B_1}^2 = 2O{A_1}^2 - 2O{A^2}_1.cos{120^0}\) \( \Rightarrow {A_1}{B_1}^2 = {2.60^2} + {2.60^2}.\frac{1}{2} = 10800{m^2}\)

Mà các tam giác \({A_1}{B_1}{C_1}\), \({A_2}{B_2}{C_2}\), … có độ dài các cạnh là cấp số nhân với công bội \({q_c} = \frac{1}{2}\)

Nên diện tích các tam giác \({A_1}{B_1}{C_1}\), \({A_2}{B_2}{C_2}\), … là cấp số nhân với công bội \({q_S} = \frac{1}{4}\)

\({S_1} = {S_{{A_1}{B_1}{C_1}}} = \frac{{{A_1}{B_1}^2.\sqrt 3 }}{4} = \frac{{10800\sqrt 3 }}{4} = 2700\sqrt 3 {m^2}\)

\({S_9} = {S_1}.{\left( {\frac{1}{4}} \right)^8} = 0,285{m^2}\)

Lời giải

Cho hình chóp \[S.ABCD\] có đáy \[ABCD\] là hình bình hành . Gọi \[M\] là trung điểm của \[SB\], \[N\] là trọng tâm \[\Delta SCD\]. Xác định giao điểm của \[MN\] và \[\left( {ABCD} \right)\] (ảnh 1)

Giao điểm của \[MN\] và \[\left( {ABCD} \right)\]

Trong mặt phẳng \[\left( {SCD} \right)\]: Gọi \[E = SN \cap CD\]. Suy ra \[E\] là trung điểm của \[DC\]

Trong mặt phẳng \[\left( {SBE} \right)\]: Gọi \[F = BE \cap MN\]

Vì \[F \in BE\] mà \[BE \subset \left( {ABCD} \right)\] nên suy ra \[F \in \left( {ABCD} \right)\]

Ta có: \[\left. \begin{array}{l}F \in \left( {ABCD} \right)\\F \in MN\end{array} \right\} \Rightarrow F = MN \cap \left( {ABCD} \right)\]

Vậy \[F\] là giao điểm của đường thẳng \[MN\] với mặt phẳng \[\left( {ABCD} \right)\].

Câu 4

A. \(SC\).                                                        
B. đường thẳng qua \(G\) và cắt\(BC\).              
C. đường thẳng qua \(G\) và song song với\(CD\).             
D. đường thẳng qua \(S\)và song song với\(AB\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. 3 đường thẳng trên chứa 3 cạnh của một tam giác.              
B. 3 đường thẳng trên trùng nhau.              
C. 3 đường thẳng trên đồng quy.              
D. Các khẳng định ở A, B, C đều sai.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP