Cho hàm số \(y = x - \frac{1}{{x + 1}}\)
a) Đồ thị của hàm số có tiệm cận đứng là \(x = 1\).
b) Đồ thị hàm số cắt trục \(Oy\) tại \(M\). Phương trình tiếp tuyến của tại \(M\) là \(y = 2x - 1\).
c) Tồn tại hai tiếp tuyến của đồ thị vuông góc với nhau.
d) Để đường thẳng \(y = k\) cắt \((C)\) tại hai điểm phân biệt \(A\) và \(B\) sao cho \(OA \bot OB\) khi đó \(k\) là nghiệm của phương trình \({k^2} - k - 1 = 0\).
Cho hàm số \(y = x - \frac{1}{{x + 1}}\)
a) Đồ thị của hàm số có tiệm cận đứng là \(x = 1\).
b) Đồ thị hàm số cắt trục \(Oy\) tại \(M\). Phương trình tiếp tuyến của tại \(M\) là \(y = 2x - 1\).
c) Tồn tại hai tiếp tuyến của đồ thị vuông góc với nhau.
d) Để đường thẳng \(y = k\) cắt \((C)\) tại hai điểm phân biệt \(A\) và \(B\) sao cho \(OA \bot OB\) khi đó \(k\) là nghiệm của phương trình \({k^2} - k - 1 = 0\).
Câu hỏi trong đề: Bộ 20 đề thi Giữa kì 1 Toán 12 có đáp án !!
Quảng cáo
Trả lời:
|
a) |
S |
b) |
Đ |
c) |
S |
d) |
Đ |
Sai: \(y = x - \frac{1}{{x + 1}}\). Tập xác định \(D = \mathbb{R}\backslash \left\{ { - 1} \right\}\)
Đạo hàm \(y' = 1 + \frac{1}{{{{(x + 1)}^2}}} > 0,\forall x \in D\): hàm số luôn luôn đồng biến, không có cực đại, cực tiểu.
\(\mathop {\lim }\limits_{x \to - 1 \mp } y = \pm \infty :x = - 1\)là tiệm cận đứng
\(\mathop {\lim }\limits_{x \to \pm \infty } y = x:y = x\)là tiệm cận xiên
Đúng: \(M\left( {0;\, - 1} \right),y'\left( 0 \right) = 2\)
Phương trình tiếp tuyến \(\left( T \right)\) tại \(M:y = 2\left( {x - 0} \right) - 1 \Leftrightarrow y = 2x - 1\)
Sai: Tiếp tuyến \(\left( {{T_1}} \right)\) của \((C)\) tại \(P\left( {{x_1},{y_1}} \right)\) có hệ số góc \({k_1} = {y'_{{x_1}}} = 1 + \frac{1}{{{{\left( {{x_1} + 1} \right)}^2}}} > 0\)
Tiếp tuyến \(\left( {{T_2}} \right)\) của \((C)\) tại \(Q\left( {{x_2},{y_2}} \right)\) có hệ số góc \({k_2} = {y'_{{x_2}}} = 1 + \frac{1}{{{{\left( {{x_2} + 1} \right)}^2}}} > 0\)
Do \({y'_{{x_1}}} > 0,\,{y'_{{x_2}}} > 0\) nên không thể có 2 tiếp tuyến của \(\left( C \right)\) vuông góc nhau
Đúng: \(y = x - \frac{1}{{x + 1}} = \frac{{{x^2} + x - 1}}{{x + 1}}\)
Phương trình hoành độ giao điểm của \(\left( C \right)\) và đường thẳng \(y = k\):
\(\frac{{{x^2} + x - 1}}{{x + 1}} = k \Leftrightarrow \left\{ \begin{array}{l}x \ne - 1\\{x^2} - \left( {k - 1} \right)x - \left( {k + 1} \right) = 0\,\,\,\,\,\left( * \right)\end{array} \right.\)
Do vị trí của \(\left( C \right)\) trên hệ tọa độ \(Oxy\) có thể kết luận \(\left( * \right)\) luôn có 2 nghiệm phân biệt \({x_A},{x_B} \ne - 1\) và \(\left\{ {\begin{array}{*{20}{l}}{{x_A} + {x_B} = k - 1}\\{{x_A}.{x_B} = - \left( {k + 1} \right)}\end{array};\,\,A\left( {{x_A};k} \right),B\left( {{x_B};k} \right)} \right.\)
\(\begin{array}{l}\overrightarrow {OA} = \left( {{x_A},k} \right),\overrightarrow {OB} = \left( {{x_B},k} \right)\\OA \bot OB \Leftrightarrow \overrightarrow {OA} \cdot \overrightarrow {OB} = 0 \Leftrightarrow {x_A}{x_B} + {k^2} = 0 \Leftrightarrow - k - 1 + {k^2} = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{k = \frac{{1 - \sqrt 5 }}{2}}\\{k = \frac{{1 + \sqrt 5 }}{2}}\end{array}} \right.\end{array}\)
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Giả sử chiều cao của một giống cây trồng tuân theo quy luật logistic được mô hình hoá bằng hàm số \(f\left( t \right) = \frac{{200}}{{1 + 4{e^{ - t}}}},\;\;t \ge 0\). Trong đó thời gian \(t\) được tính bằng tháng kể từ khi hạt bắt đầu nảy mầm. Khi đó đạo hàm \(f'\left( t \right)\) sẽ biểu thị tốc độ tăng chiều cao của giống cây đó. Hỏi sau khi hạt giống bắt đầu nảy mầm thì sau bao nhiêu tháng tốc độ tăng chiều cao của cây là lớn nhất?
Lời giải
Ta có: \(f\left( t \right) = \frac{{200}}{{1 + 4{e^{ - t}}}} \Rightarrow f'\left( t \right) = 200.\frac{{ - 4.{e^{ - t}}.\left( { - 1} \right)}}{{{{\left( {1 + 4{e^{ - t}}} \right)}^2}}} = 200.\frac{{4.{e^{ - t}}}}{{{{\left( {1 + 4{e^{ - t}}} \right)}^2}}}\)
\(f''\left( t \right) = 200.\frac{{ - 4{e^{ - t}}{{\left( {1 + 4{e^{ - t}}} \right)}^2} - 2\left( {1 + 4{e^{ - t}}} \right).\left( { - 4{e^t}} \right).4{e^{ - t}}}}{{{{\left( {1 + 4{e^{ - t}}} \right)}^4}}}\)\( = 200.\frac{{ - 4{e^{ - t}}.\left( {1 + 4{e^{ - t}}} \right)\left( {1 + 4{e^{ - t}} - 8{e^{ - t}}} \right)}}{{{{\left( {1 + 4{e^{ - t}}} \right)}^4}}}\)
\( = 200.\frac{{ - 4{e^{ - t}}.\left( {1 + 4{e^{ - t}}} \right)\left( {1 - 4{e^{ - t}}} \right)}}{{{{\left( {1 + 4{e^{ - t}}} \right)}^4}}}\)\( \Rightarrow f''\left( t \right) = 0 \Leftrightarrow {e^{ - t}} = \frac{1}{4} \Leftrightarrow t = - \ln \left( {\frac{1}{4}} \right) = \ln 4 \approx 1,38\)

Vậy sau khi nảy mầm khoảng \(\ln 4 \approx 1,38\) tháng thì cây có tốc độ tăng chiều cao lớn nhất.
Câu 3
Một giỏ hoa treo trong nhà làm bằng 3 sợi dây không giãn, mỗi sợi dài \(60\left( {cm} \right)\) miếng kê là một miếng gỗ cân đối hình tròn bán kính \(20\left( {cm} \right)\), ba sợi dây được thắt một đầu bên trên và đỡ giá gỗ tại 3 điểm tạo thành tam giác đều . Biết lực chịu đựng của mỗi sợi dây bằng nhau và mỗi sợi chịu không quá \(15N\) trọng lượng của miếng giá gỗ là \(5N\). Tính trọng lượng tối đa của các chậu hoa để dây treo không bị đứt .
Một giỏ hoa treo trong nhà làm bằng 3 sợi dây không giãn, mỗi sợi dài \(60\left( {cm} \right)\) miếng kê là một miếng gỗ cân đối hình tròn bán kính \(20\left( {cm} \right)\), ba sợi dây được thắt một đầu bên trên và đỡ giá gỗ tại 3 điểm tạo thành tam giác đều . Biết lực chịu đựng của mỗi sợi dây bằng nhau và mỗi sợi chịu không quá \(15N\) trọng lượng của miếng giá gỗ là \(5N\). Tính trọng lượng tối đa của các chậu hoa để dây treo không bị đứt .

Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


![Cho một tấm nhôm hình lục giác đều cạnh \[90\] cm. Người ta cắt ở (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/10/21-1761612074.png)