Câu hỏi:

28/10/2025 61 Lưu

Cho hàm số \(y = f\left( x \right)\)liên tục trên \(\mathbb{R}\)và có đồ thị như hình vẽ. Mệnh đề nào sau đây sai?
              Chọn A  Xét đáp án: Hàm số có 2 đi (ảnh 1)

A. Hàm số \(y = f\left( x \right)\)có cực tiểu bằng \( - 1\).              
B. Nếu \(\left| m \right| > 2\)thì phương trình \(f\left( x \right) = m\)có nghiệm duy nhất.              
C. Giá trị lớn nhất của hàm số \(y = f\left( x \right)\)trên đoạn \(\left[ { - 2;\,2} \right]\)bằng \(2\).              
D. Hàm số \(y = f\left( x \right)\)có hai điểm cực trị.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Chọn A

Xét đáp án: Hàm số có 2 điểm cực trị là \(x =  \pm 1\). Đây là phương án đúng.

Xét đáp án: Đường thẳng \(y = m\)cắt \(y = f\left( x \right)\)tại 1 điểm duy nhất khi \(\left| m \right| > 2\). Vậy phương trình \(f\left( x \right) = m\)có duy nhất nghiệm. Đây là phương án đúng.

Xét đáp án Hàm số \(y = f\left( x \right)\)đạt cực tiểu tại \(x =  - 1\)và giá trị cực tiểu \(y =  - 2\). Vậy Đây là phương án sai do thiếu ý.

Lưu ý: Phương án còn lại đúng vì GTLN của hàm số \(y = f\left( x \right)\)trên đoạn \(\left[ { - 2;\,2} \right]\)bằng \(2\)khi \(x =  - 2\,,\,x = 1\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

F1=a;F2=b;F3=c thì |a|=3,|b|=6,|c|=9,(a;b)=(b;c)=(c;a)=60° Ta có: Fhl=a+b+Invalid <m:msup> elementcFhl2==|a|2+|b|2+|c|2+2ab+2ac+2bc=9+36+81+18+54+27=225Fhl=25( N)

Lời giải

a)

Đ

b)

S

c)

Đ

d)

Đ

 

Ta có mặt cắt qua trục hình nón như hình vẽ. Đặt \(x\) là bán kính đáy hình trụ, \(h\) là chiều cao của hình trụ.

Một khúc gỗ có dạng hình khối nó (ảnh 2)

Ta có hai tam giác \(SAI\) và \(SA'I'\) đồng dạng.

\( \Rightarrow \frac{{SI}}{{SI'}} = \frac{{AI}}{{A'I'}} \Leftrightarrow \frac{6}{{6 - h}} = \frac{2}{x} \Rightarrow h = 6 - 3x\), với \(0 < x < 2\)Sai.

Ta có:

Chiều cao của khối trụ tính theo bán kính đáy hình trụ là \(h =  - 3x + 6\) với \(0 < x < 2\).

Suy ra: Thể tích của khối trụ là: \[V = \pi .{x^2}.h = \pi .{x^2}.\left( {6 - 3x} \right) = \pi \left( { - 3{x^3} + 6{x^2}} \right)\], với \(0 < x < 2\).Đúng.

Bác thợ mộc chế tác khúc gỗ đó thành hình trụ có bán kính đáy bằng chiều cao

Suy ra: \(x = 6 - 3x \Rightarrow x = \frac{3}{2} \Rightarrow V = \pi  \cdot \left[ { - 3{{\left( {\frac{3}{2}} \right)}^3} + 6{{\left( {\frac{3}{2}} \right)}^2}} \right] = \), khi đó thể tích của khối trụ là \[V = \pi  \cdot \left[ { - 3{{\left( {\frac{3}{2}} \right)}^3} + 6{{\left( {\frac{3}{2}} \right)}^2}} \right] = \frac{{27}}{8}\pi \left( {{m^3}} \right).\]Đúng.

Thể tích của khối trụ là: \[V = \pi .{x^2}.h = \pi .{x^2}.\left( {6 - 3x} \right) = \pi \left( { - 3{x^3} + 6{x^2}} \right)\], với \(0 < x < 2\).

Xét hàm số \[V = \pi \left( { - 3{x^3} + 6{x^2}} \right)\], với \(0 < x < 2\).

\[V' = \pi \left( { - 9{x^2} + 12x} \right)\].

\[V' = 0 \Leftrightarrow \pi \left( { - 9{x^2} + 12x} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0{\rm{ }}\,\left( l \right)\\x = \frac{4}{3}{\rm{ }}\left( n \right)\end{array} \right.\].

Bảng biến thiên:

Một khúc gỗ có dạng hình khối nó (ảnh 3)

Dựa vào bảng biến thiên ta thấy \({V_{\max }} = \frac{{32\pi }}{9}\left( {{m^3}} \right)\) khi \(x = \frac{4}{3}\).