Một vật dao động điều hòa có độ lớn vận tốc cực đại là 31,4 cm/s. Lấy \[\pi = 3,14\]. Tốc độ trung bình của vật trong một chu kì dao động là bao nhiêu?
                                    
                                                                                                                        Một vật dao động điều hòa có độ lớn vận tốc cực đại là 31,4 cm/s. Lấy \[\pi = 3,14\]. Tốc độ trung bình của vật trong một chu kì dao động là bao nhiêu?
Quảng cáo
Trả lời:
 Giải bởi Vietjack
                                        Giải bởi Vietjack
                                    Tốc độ trung bình của vật trong một chu kỳ dao động là: \[\overline v = \frac{s}{t} = \frac{{4A}}{T}\]
Do \[{v_{\max }} = A\omega = \frac{{2\pi A}}{T} \to \frac{A}{T} = \frac{{{v_{\max }}}}{{2\pi }}\]
Từ đó: \[\overline v = \frac{{2.{v_{\max }}}}{\pi } = \frac{{2.31,4}}{\pi } = 20\left( {cm/s} \right)\]
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là C
Ta có: \[{A^2} = x_1^2 + \frac{{v_1^2}}{{{\omega ^2}}} = x_2^2 + \frac{{v_2^2}}{{{\omega ^2}}} \to \omega = \sqrt {\frac{{v_1^2 - v_2^2}}{{x_2^2 - x_1^2}}} = \sqrt {\frac{{{{20}^2} - {{\left( {20\sqrt 3 } \right)}^2}}}{{{{\left( {8\sqrt 2 } \right)}^2} - {{\left( {8\sqrt 3 } \right)}^2}}}} = 2,5\left( {rad/s} \right)\]
\[A = \sqrt {x_1^2 + \frac{{v_1^2}}{{{\omega ^2}}}} = 16cm \to {v_{\max }} = A\omega = 40\left( {cm/s} \right)\]
Lời giải
Ta có: \[\omega = \sqrt {\frac{g}{{\Delta l}}} = \sqrt {\frac{{10}}{{0,05}}} = 10\sqrt 2 \left( {rad/s} \right)\]
\[A = \frac{{{v_{\max }}}}{\omega } = \frac{{30\sqrt 2 }}{{10\sqrt 2 }} = 3\left( {cm} \right)\]
Từ đó: \[{v_0} = \pm \omega \sqrt {{A^2} - {x^2}} = \pm 10\sqrt 2 \sqrt {{3^2} - {1^2}} = 40\left( {cm/s} \right)\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
 Nhắn tin Zalo
 Nhắn tin Zalo