Câu hỏi:

06/11/2025 647 Lưu

Một ngôi nhà gồm hai phần. Phần thân nhà dạng hình hộp chữ nhật \[ABCD.OMNK\] có chiều dài 1200 cm, chiều rộng 900 cm, chiều cao 450 cm. Phần mái nhà dạng hình chóp S.ABCD có các cạnh bên bằng nhau và cùng tạo với mặt đáy một góc a  \(\tan \alpha = \frac{1}{5}\). Chọn hệ trục toạ độ Oxyz sao cho M thuộc tia Ox, K thuộc tia Oy, A thuộc tia Oz (như hình vẽ).

Media VietJack

Biết \[S\left( {a;b;c} \right)\] (đơn vị của a, b, c là centimet). Tính giá trị của biểu thức \[P = a + b + c\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Media VietJack

Gọi I là tâm của hình chữ nhật \[ABCD\].

Ta có \(BD = \sqrt[{}]{{{{900}^2} + {{1200}^2}}} = 1500 \Rightarrow ID = 750\).

Theo giả thiết ta có \(\tan \widehat {SDI} = \frac{1}{5} \Rightarrow \frac{{SI}}{{ID}} = \frac{1}{5} \Rightarrow SI = \frac{1}{5}ID = \frac{1}{5} \cdot 750 = 150\).

Gọi H là tâm của hình chữ nhật OKNM. Từ giả thiết ta có \(H\left( {450;600;0} \right)\).

Ta có \(SH = IH + SI = 450 + 150 = 600\).

Do đó \(S\left( {450;600;600} \right) \Rightarrow a + b + c = 450 + 600 + 600 = 1650\).

Đáp án: 1650.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Media VietJack

Gán các lực \[\overrightarrow {{F_1}} = \overrightarrow {SA} ,\,\,\overrightarrow {{F_2}} = \overrightarrow {SB} ,\,\,\overrightarrow {{F_3}} = \overrightarrow {SC} .\]

\(\left| {\overrightarrow {{F_1}} } \right| = \left| {\overrightarrow {{F_2}} } \right| = \left| {\overrightarrow {{F_3}} } \right|\) và góc tạo bởi mỗi chân của giá đỡ với mặt đất bằng \(60^\circ \) nên \(S.ABC\) là hình chóp đều.

Gọi \(M\) là trung điểm \(BC,\,\,G\) là trọng tâm \(\Delta ABC \Rightarrow SG \bot \left( {ABC} \right).\)

Ta có \(\widehat {SAG} = 60^\circ \Rightarrow SG = SA \cdot \sin 60^\circ = \frac{{SA\sqrt 3 }}{2} \Rightarrow SA = \frac{{2SG}}{{\sqrt 3 }}.\)

Đặt \(\overrightarrow F = \overrightarrow {{F_1}} + \overrightarrow {{F_2}} + \overrightarrow {{F_3}} \Rightarrow \left| {\overrightarrow F } \right| = 30\left( {\rm{N}} \right){\rm{.}}\)

\(\overrightarrow F = \overrightarrow {{F_1}} + \overrightarrow {{F_2}} + \overrightarrow {{F_3}} = \overrightarrow {SA} + \overrightarrow {SB} + \overrightarrow {SC} = 3\overrightarrow {SG} \Rightarrow \left| {\overrightarrow F } \right| = 3\left| {\overrightarrow {SG} } \right| \Rightarrow SG = \frac{{\left| {\overrightarrow F } \right|}}{3} = 10.\)

Vậy \(\left| {\overrightarrow {{F_1}} } \right| = \left| {\overrightarrow {SA} } \right| = 2\frac{{SG}}{{\sqrt 3 }} = \frac{{20}}{{\sqrt 3 }} \approx 11,5\left( {\rm{N}} \right){\rm{.}}\)

Đáp án: 11,5.

Lời giải

Chọn hệ trục tọa độ Oxyz với gốc O đặt tại điểm xuất phát của máy bay, mặt phẳng \(\left( {Oxy} \right)\) trùng với mặt đất sao cho trục Ox hướng về phía Nam, trục Oy hướng về phía Đông và trục Oz hướng thẳng đứng lên trời, đơn vị đo lấy theo kilômét.

Khi đó tọa độ của máy bay là điểm \(A\left( { - 55; - 20;1,5} \right)\).

Khoảng cách của chiếc máy bay với vị trí tại điểm xuất phát bằng:

\(OA = \sqrt {{{\left( { - 55} \right)}^2} + {{\left( { - 20} \right)}^2} + 1,{5^2}} \approx 58,5\left( {{\rm{km}}} \right)\).

Đáp án: 58,5.

Câu 6

A. \( - \frac{{{a^2}\sqrt 3 }}{2}\).            
B. \( - \frac{{{a^2}}}{2}\).       
C. \(\frac{{{a^2}}}{2}\).    
D. \(\frac{{{a^2}\sqrt 3 }}{2}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP