Cho phương trình: \(x + 3a = 10 + ax - a\,\;\left( 1 \right).\) Với giá trị nào của \(a\) thì \(x = 2\) là một nghiệm của phương trình \(\left( 1 \right)?\)
Cho phương trình: \(x + 3a = 10 + ax - a\,\;\left( 1 \right).\) Với giá trị nào của \(a\) thì \(x = 2\) là một nghiệm của phương trình \(\left( 1 \right)?\)
Quảng cáo
Trả lời:
Đáp án: \(4\)
Để \(x = 2\) là một nghiệm của phương trình \(\left( 1 \right)\) thì:
\(2 + 3a = 10 + 2a - a\)
\(3a - 2a + a = 10 - 2\)
\(2a = 8\)
\(a = 4.\)
Vậy \(a = 4\) thì \(x = 2\) là một nghiệm của phương trình \(\left( 1 \right).\)
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là: B
Vì \(1 + 1 = 2 \ne 0\) nên \(x = 1\) không là nghiệm của phương trình \(x + 1 = 0.\)
Vì \({1^2} - 1 = 0\) nên \(x = 1\) là nghiệm của phương trình \({x^2} - 1 = 0.\)
Vì \( - 1 - 1 = - 2 \ne 0\) nên \(x = 1\) không là nghiệm của phương trình \( - x - 1 = 0.\)
Vì \({1^2} + 1 = 2 \ne 0\) nên \(x = 1\) không là nghiệm của phương trình \({x^2} + 1 = 0.\)
Câu 2
Lời giải
Đáp án đúng là: D
Số \({x_0}\) được gọi là nghiệm của phương trình \(A\left( x \right) = B\left( x \right)\) khi \(A\left( {{x_0}} \right) = B\left( {{x_0}} \right).\)
Câu 3
a) Chu vi tam giác là \(3x + 9\;\,\left( {{\rm{cm}}} \right).\)
b) Chu vi hình chữ nhật là \(2x + 8\;\,\left( {{\rm{cm}}} \right).\)
c) Phương trình biểu thị sự bằng nhau của chu vi hình tam giác và chu vi hình chữ nhật là
\(3x + 9 = 2x + 8.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

