1. Thực hiện phép tính (tính hợp lí nếu có thể).
(a) \(A = 3:{\left( {\frac{{ - 3}}{2}} \right)^2} + \frac{1}{9}.\sqrt {36} + 0,75\)
(b) \(B = \left( {8 - \frac{2}{3} + \frac{1}{2}} \right) - \left( {5 - \frac{7}{3} - \frac{3}{2}} \right) - \left( {\frac{5}{3} + \frac{5}{2} + 4} \right)\).
2. Tìm \(x\), biết:
(a) \(\frac{3}{4} - \left( {x + \frac{1}{2}} \right) = \frac{1}{4}\)
(b) \({\left( {x - \frac{2}{3}} \right)^2} + \frac{{16}}{{25}} = 1\).
Quảng cáo
Trả lời:
1.
a) \(A = 3:{\left( {\frac{{ - 3}}{2}} \right)^2} + \frac{1}{9}\,\,.\,\sqrt {36} + 0,75\)\( = 3:\frac{9}{4} + \frac{1}{9}.6 + 0,75\)
\( = 3\,\,.\,\,\frac{4}{9} + \frac{2}{3} + 0,75\)\(A = \frac{4}{3} + \frac{2}{3} + 0,75\)\( = 2 + 0,75\)\( = 2,75\).
b) \(B = \left( {8 - \frac{2}{3} + \frac{1}{2}} \right) - \left( {5 - \frac{7}{3} - \frac{3}{2}} \right) - \left( {\frac{5}{3} + \frac{5}{2} + 4} \right)\).
\[ = 8 - \frac{2}{3} + \frac{1}{2} - 5 + \frac{7}{3} + \frac{3}{2} - \frac{5}{3} - \frac{5}{2} - 4\]
\[ = \left( {8 - 5 - 4} \right) + \left( { - \frac{2}{3} + \frac{7}{3} - \frac{5}{3}} \right) + \left( {\frac{1}{2} + \frac{3}{2} - \frac{5}{2}} \right)\]
\[ = - 1 + 0 + \frac{{ - 1}}{2}\]\[ = \frac{{ - 3}}{2}\].
2.
a) \(\frac{3}{4} - \left( {x + \frac{1}{2}} \right) = \frac{1}{4}\)
\(x + \frac{1}{2} = \frac{3}{4} - \frac{1}{4}\)
\(x + \frac{1}{2} = \frac{1}{2}\)
\(x = \frac{1}{2} - \frac{1}{2}\)
\(x = 0\)
Vậy \(x = 0\).
b) \({\left( {x - \frac{2}{3}} \right)^2} + \frac{{16}}{{25}} = 1\)
\[{\left( {x - \frac{2}{3}} \right)^2} = 1 - \frac{{16}}{{25}}\]
\[{\left( {x - \frac{2}{3}} \right)^2} = \frac{9}{{25}}\]
\[{\left( {x - \frac{2}{3}} \right)^2} = {\left( {\frac{3}{5}} \right)^2} = {\left( {\frac{{ - 3}}{5}} \right)^2}\]
TH1: \(x - \frac{2}{3} = \frac{3}{5}\)
\(x = \frac{3}{5} + \frac{2}{3}\)
\(x = \frac{{19}}{{15}}\)
TH2: \(x - \frac{2}{3} = \frac{{ - 3}}{5}\)
\(x = \frac{{ - 3}}{5} + \frac{2}{3}\)
\(x = \frac{1}{{15}}\)
Vậy \[x \in \left\{ {\frac{{19}}{{15}};\,\,\frac{1}{{15}}} \right\}\].
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Vì \(Oz\) nằm giữa hai tia \(Ox,\,\,Oy\) nên \(\widehat {xOz} + \widehat {zOy} = \widehat {xOy}\)
Hay \(40^\circ + \widehat {zOy} = 80^\circ \).
Suy ra \(\widehat {zOy} = 80^\circ - 40^\circ = 40^\circ \).
Vậy \(\widehat {zOy} = 40^\circ \).
Ta có \(Oz\) nằm giữa hai tia \(Ox,\,\,Oy\) và \(\widehat {xOz} = \widehat {zOy} = \frac{{\widehat {xOy}}}{2}\).
Do đó tia \(Oz\) là tia phân giác của \(\widehat {xOy}\).
b) Vì \(Om\)là tia đối của tia \(Ox\) nên \(\widehat {mOz}\) và \(\widehat {zOx}\) là hai góc kề bù.
Khi đó, ta có \(\widehat {mOz} + \widehat {zOx} = 180^\circ \)
Suy ra \[\widehat {mOz} = 180^\circ - \widehat {zOx} = 180^\circ - 40^\circ = 140^\circ \].
Lời giải
Ta có \[A = \frac{{5n - 3}}{{n - 2}} = \frac{{5n - 10 + 10 - 3}}{{n - 2}} = \frac{{5\left( {n - 2} \right) + 7}}{{n - 2}} = 5 + \frac{7}{{n - 2}}\].
Để biểu thức\(A\) là số nguyên thì \(\frac{7}{{n - 2}}\) nguyên hay \(7\,\, \vdots \,\,\left( {n - 2} \right)\).
Do đó \(\left( {n - 2} \right) \in \) Ư(7) \( = \left\{ { \pm 1;\,\, \pm 7} \right\}\).

Vậy để biểu thức\(A\) đạt giá trị nguyên thì \(n \in \left\{ { - 5;\,\, - 1;\,\,3;\,\,9} \right\}\).
Câu 3
3125
1
1225
1525.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
