Câu hỏi:

11/11/2025 597 Lưu

Người ta dùng máy ảnh để chụp vật \(AB\) cao 120 cm (như hình vẽ). Sau khi tráng phim thấy ảnh cao 3 cm. Biết khoảng cách từ phim đến vật kính của máy ảnh lúc chụp là \(5{\rm{ cm}}{\rm{.}}\)

Media VietJack

Hỏi vật \(AB\) được đặt cách vật kính máy ảnh là bao nhiêu mét?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án: 200

Xét \(\Delta OAB\)\(AB\parallel A'B'\) (gt) nên: \(\frac{{OB'}}{{OB}} = \frac{{A'B'}}{{AB}}\) (hệ quả định lí Thalès).

Suy ra \(\frac{5}{{OB}} = \frac{3}{{120}}\) nên \(OB = \frac{{120 \cdot 5}}{3} = 200{\rm{ }}\left( {\rm{m}} \right)\).

Vậy vật \(AB\) được đặt cách vật kính máy ảnh là 200 m.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án: 37,3

Xét \(\Delta ABC\)\(FE\parallel BA\) (gt) nên \(\frac{{CF}}{{CA}} = \frac{{EF}}{{AB}}\) (hệ quả định lí Thalès).

Suy ra \(\frac{{44,2}}{{44,5 + 44,2}} = \frac{{18,6}}{{AB}}\) suy ra \(AB = \frac{{18,6 \cdot 88,7}}{{44,2}} = 37,3{\rm{ }}\left( {\rm{m}} \right)\).

Vậy chiều rộng của khúc sông \(AB\)\(37,3{\rm{ m}}{\rm{.}}\)

Câu 2

a) \(\frac{{AK}}{{BD}} = \frac{{AH}}{{DC}}\).
Đúng
Sai
b) \(\frac{{AF}}{{BF}} + \frac{{AE}}{{CE}} = \frac{{HK}}{{BC}}.\)
Đúng
Sai
c) \(\frac{{AE}}{{CE}} + \frac{{AF}}{{BF}} = \frac{{AI}}{{ID}}\).
Đúng
Sai
d) \(\frac{{BD}}{{DC}} \cdot \frac{{EC}}{{EA}} \cdot \frac{{FA}}{{FB}} = 3.\)
Đúng
Sai

Lời giải

a) Đúng.

\(AK\parallel BD\) nên áp dụng định lí Thalès, ta có: \(\frac{{AI}}{{ID}} = \frac{{AK}}{{BD}}.\) (1)

\(AH\parallel DC\) nên suy ra \(\frac{{AI}}{{ID}} = \frac{{AH}}{{DC}}\) (2)

Từ (1) và (2) suy ra \(\frac{{AK}}{{BD}} = \frac{{AH}}{{DC}}\).

b) Đúng.

Ta có \(\frac{{AF}}{{BF}} = \frac{{AH}}{{BC}}{\rm{ }}\left( {AH\parallel BC} \right)\)\(\frac{{AE}}{{CE}} = \frac{{AK}}{{BC}}{\rm{ }}\left( {AK\parallel BC} \right)\).

Do đó, \(\frac{{AF}}{{BF}} + \frac{{AE}}{{CE}} = \frac{{AH}}{{BC}} + \frac{{AK}}{{BC}} = \frac{{HK}}{{BC}}.\)

c) Đúng.

Lại có \(\frac{{HK}}{{BC}} = \frac{{HI}}{{IC}}{\rm{ }}\left( {HK\parallel BC} \right)\)\(\frac{{HI}}{{IC}} = \frac{{AI}}{{ID}}{\rm{ }}\left( {AH\parallel BC} \right)\).

Từ đây suy ra \(\frac{{AF}}{{BF}} + \frac{{AE}}{{CE}} = \frac{{HK}}{{BC}} = \frac{{HI}}{{IC}} = \frac{{AI}}{{ID}}\).

Suy ra \(\frac{{AE}}{{CE}} + \frac{{AF}}{{BF}} = \frac{{AI}}{{ID}}\).

d) Sai.

Từ phần a), ta có: \(\frac{{AK}}{{BD}} = \frac{{AH}}{{DC}}\) suy ra \(\frac{{BD}}{{DC}} = \frac{{AK}}{{AH}}\).

Lại có \(AK\parallel BC\) suy ra \(\frac{{EC}}{{EA}} = \frac{{BC}}{{AK}}\).

Mặt khác \(AH\parallel BC\) nên \(\frac{{FA}}{{FB}} = \frac{{HA}}{{BC}}\).

Từ đây suy ra BDDC . ECEA . FAFB = AKAH  . BCAK . HABC  = 1

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

a) \(\frac{{MB}}{{MA}} = \frac{{BD}}{{DA}}.\)
Đúng
Sai
b) \(\frac{{NC}}{{NA}} = \frac{{DC}}{{DA}}.\)
Đúng
Sai
c) \(\frac{{MB}}{{MA}} = \frac{{NA}}{{NC}}.\)
Đúng
Sai
d) \(MN\parallel BC.\)
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\frac{3}{4}.\)      
B. \(\frac{2}{3}.\)    
C. \(\frac{4}{3}.\)       
D. \(\frac{3}{2}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP