Cho hàm số có đạo hàm trên và là hàm số bậc ba có đồ thị là đường cong trong hình vẽ.
Cho hàm số có đạo hàm trên và là hàm số bậc ba có đồ thị là đường cong trong hình vẽ.

Quảng cáo
Trả lời:
a) Sai. Ta có \(g'\left( x \right) = f'\left( x \right) - x + 1 = 0 \Leftrightarrow f'\left( x \right) = x - 1\,\,\,\,\,\,(1)\)
Số nghiệm của (1) là số giao điểm của \(y = f'\left( x \right)\) và \(y = x - 1\). Vẽ đồ thị của hai hàm số này trên cùng 1 hệ trục tọa độ ta thấy 2 đồ thị cắt nhau tại 3 điểm có hoành độ \(x = - 3;\,\,x = - 1;\,\,x = 1\).


Vậy \(h(x) = \frac{{2x + 1}}{{{{(x + 2)}^2}(x - 1)}} \cdot \)
Ta có \(\mathop {\lim }\limits_{x \to - {2^ + }} h(x) = + \infty ;\,\,\mathop {\lim }\limits_{x \to {1^ + }} h(x) = + \infty ;\mathop {\lim }\limits_{x \to \pm \infty } h(x) = 0\) nên \(x = - 2;x = 1\) là các tiệm cận đứng và \(y = 0\) là tiệm cận ngang của đồ thị hàm số \(h(x)\).
c) Sai. Dựa vào đồ thị hàm số \(f'(x)\) ta thấy \(f'(x) \le 0,\,\,\forall x \le 1\) và \(f'(x) > 0,\,\,\forall x > 1\) nên hàm số chỉ đồng biến trên khoảng \((1; + \infty )\).
d) Sai. Lập bảng biến thiên của \(f(x)\)
Hàm số \(f(x)\) chỉ có một điểm cực tiểu \(x = 1.\)
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
a) Số cách lấy được cả 3 quả cầu đánh số chẵn bằng 1540.
b) Xác xuất để tích 3 số ghi trên 3 quả cầu là một số chia hết cho 8 bằng \(\frac{{523}}{{1290}}\).
c) Xác xuất để tổng 3 số ghi trên 3 quả cầu là số lẻ bằng \(\frac{1}{2}\).
Lời giải
a) Đúng. Số cách lấy được cả 3 quả cầu đánh số chẵn là \(C_{22}^3 = 1540\).
b) Sai. Số cách lấy 3 quả tùy ý là \(n\left( \Omega \right) = C_{45}^3 = 14190\).
Ta chia các quả cầu thành các nhóm \({S_0};{S_1};{S_2};{S_3}\) là các nhóm chứa các quả cầu lần lượt có các số dư như sau:
\({S_0}\) gồm 5 số chia hết cho 8
\({S_1}\) gồm 11 số chia hết cho 2 mà không chia hết cho 4
\({S_2}\) gồm 6 số chia hết cho 4 mà không chia hết cho 8
\({S_3}\) gồm 23 số lẻ.
Gọi \(A\) là biến cố: “tích 3 số ghi trên 3 quả cầu là một số chia hết cho 8”.
Ta đi tính \(n\left( {\overline A } \right)\).
Để tích 3 số không chia hết cho 8 thì xảy ra các trường hợp:
3 số thuộc \({S_3}\).
1 số thuộc \({S_1}\) và 2 số thuộc \({S_3}\).
1 số thuộc \({S_2}\) và 2 số thuộc \({S_3}\).
2 số thuộc \({S_1}\) và 1 số thuộc \({S_3}\).
\(n\left( {\overline A } \right) = C_{23}^3 + C_{23}^2\left( {C_{11}^1 + C_6^1} \right) + C_{23}^1C_{11}^2 = 1771 + 4301 + 1265 = 7337\).
Suy ra \(P\left( A \right) = 1 - P\left( {\overline A } \right) = \frac{{623}}{{1290}}\).
c) Sai. Để chọn được 3 số có tổng là số lẻ thì xảy ra hai trường hợp:
3 số đều lẻ
1 số lẻ và 2 số chẵn
Gọi \(B\) là biến cố: “tổng 3 số ghi trên 3 quả cầu là số lẻ”
\(n\left( B \right) = C_{23}^3 + C_{23}^1C_{22}^2 = 7084\)
\(P\left( B \right) = \frac{{7084}}{{14190}} = \frac{{322}}{{645}}\)
d) Đúng. Ta chia các quả cầu thành các nhóm \({C_0};{C_1};{C_2};{C_3}\) là các nhóm chứa các quả cầu lần lượt có các số dư như sau:
\({C_0}\) gồm 11 số chia hết cho 4.
\({C_1}\) gồm 12 số chia hết cho 4 dư 1.
\({C_2}\) gồm 11 số chia hết cho 4 dư 2.
\({C_3}\) gồm 11 số chia hết cho 4 dư 3.
Gọi \(C\) là biến cố: “tổng 3 số ghi trên 3 quả cầu là số chia hết cho 4”.
Xảy ra các trường hợp sau:
Cả 3 số đều thuộc \({C_0}\) có \(C_{11}^3 = 165\) cách chọn.
1 số thuộc \({C_0}\) và 2 số thuộc \({C_2}\) có \(C_{11}^1.C_{11}^2 = 605\) cách chọn.
1 số thuộc \({C_0}\), 1 số thuộc \({C_1}\) và 1 số thuộc \({C_3}\) có \(11 \times 12 \times 11 = 1452\) cách chọn.
1 số thuộc \({C_2}\) và 2 số thuộc \({C_3}\) có \(C_{11}^1.C_{11}^2 = 605\) cách chọn.
2 số thuộc \({C_1}\) và 1 số thuộc \({C_2}\) có \(C_{12}^2.C_{11}^1 = 726\) cách chọn.
\(n\left( C \right) = 3553 \Rightarrow P\left( C \right) = \frac{{3553}}{{C_{45}^3}} = \frac{{323}}{{1290}}\).
Câu 2
Lời giải

Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \(\frac{1}{3}\).
B. \( - \frac{2}{3}\).
C. 1.
D. 0.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
a) Tập xác định của hàm số là khoảng \(\left( { - \infty ;1} \right)\).
b) Hàm số có đạo hàm \(y' = \frac{1}{{3\sqrt[3]{{{{\left( {9 - {x^2}} \right)}^2}}}}} - \frac{1}{{1 - x}}\).
c) Hàm số nghịch biến trên khoảng \(\left( {0;1} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.