Kim tự tháp là một công trình kiến trúc tuyệt đẹp bằng kính tọa lạc ngay lối vào của bảo tàng Louvre, Pari. Kim tự tháp có dạng là hình chóp tứ giác đều với chiều cao 21 m và độ dài cạnh đáy là 34 m. Các mặt bên của kim tự tháp là các tam giác đều (xem hình ảnh minh họa bên).
a) Tính thể tích của kim tự tháp Louvre.
b) Hỏi nếu sử dụng loại gạch hình vuông có cạnh là 60 cm để lót sàn thì cần bao nhiêu viên gạch? Biết diện tích của các đường rãnh giữa các viên gạch lót sàn là 156 m2.
Kim tự tháp là một công trình kiến trúc tuyệt đẹp bằng kính tọa lạc ngay lối vào của bảo tàng Louvre, Pari. Kim tự tháp có dạng là hình chóp tứ giác đều với chiều cao 21 m và độ dài cạnh đáy là 34 m. Các mặt bên của kim tự tháp là các tam giác đều (xem hình ảnh minh họa bên).

a) Tính thể tích của kim tự tháp Louvre.
b) Hỏi nếu sử dụng loại gạch hình vuông có cạnh là 60 cm để lót sàn thì cần bao nhiêu viên gạch? Biết diện tích của các đường rãnh giữa các viên gạch lót sàn là 156 m2.
Câu hỏi trong đề: Bộ 10 đề thi giữa kì 1 Toán 8 Cánh diều có đáp án !!
Quảng cáo
Trả lời:
a) Diện tích sàn của tự kim tháp là: (m2).
Thể tích của kim tự tháp là: (m3).
b) Diện tích một viên gạch hình vuông là: \({S_{gach}} = {60^2} = 3600\;\;{\rm{c}}{{\rm{m}}^2} = 0,36\;\;{{\rm{m}}^2}\)
Diện tích sàn cần lát của kim tự tháp là: \(1\,\,156 - 156 = 1\,\,000\) (m2).
Số viên gạch hình vuông cần dùng là: \(\frac{{1\,\,000}}{{0,36}} \approx 2\,\,778\) (viên).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có: \(5{x^2} + 5{y^2} + 8xy - 2x + 2y + 2 = 0\)
\(\left( {4{x^2} + 8xy + 4{y^2}} \right) + \left( {{x^2} - 2x + 1} \right) + \left( {{y^2} + 2y + 1} \right) = 0\)
\({\left( {2x + 2y} \right)^2} + {\left( {x - 1} \right)^2} + {\left( {y + 1} \right)^2} = 0\) \(\left( * \right)\)
Với mọi \(x,y\) ta có: \({\left( {2x + 2y} \right)^2} \ge 0;\,\,{\left( {x - 1} \right)^2} \ge 0;\,\,{\left( {y + 1} \right)^2} \ge 0\)
Do đó \(\left( * \right)\) xảy ra khi và chỉ khi \(\left\{ \begin{array}{l}{\left( {2x + 2y} \right)^2} = 0\\{\left( {x - 1} \right)^2} = 0\\\,{\left( {y + 1} \right)^2} = 0\end{array} \right.\)
Hay \(\left\{ \begin{array}{l}2x + 2y = 0\\x - 1 = 0\\\,y + 1 = 0\end{array} \right.\), tức \(\left\{ \begin{array}{l}x + y = 0\\x = 1\\\,y = - 1\end{array} \right.\)
Khi đó \(M = {\left( {x + y} \right)^{2023}} + {\left( {x - 2} \right)^{2024}} + {\left( {y + 1} \right)^{2025}} = {0^{2023}} + {\left( {1 - 2} \right)^{2024}} + {\left( { - 1 + 1} \right)^{2025}} = 1.\)
Câu 2
A. Có các cạnh bên bằng nhau;
B. Có đáy là hình vuông;
C. Có các mặt bên là các tam giác cân;
Lời giải
Đáp án đúng là: B
Hình chóp tam giác đều có đáy là hình tam giác đều. Do đó khẳng định B là sai.
Câu 3
A. Hai đỉnh kề với đỉnh \(A\) là \(B\) và \(D\);
B. Hai đỉnh đối nhau là \(A\) và \(C;\) \(B\) và \(D\);
C. Tứ giác \(ABCD\) có 2 đường chéo;
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \(SH\);
B. \(SA\);
C. \(HA\);
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

