Một khối rubik có dạng hình chóp tam giác đều (các mặt khối rubic là các tam giác đều bằng nhau), có chu vi đáy bằng 234 mm, đường cao của mặt bên hình chóp là \[67,5\] mm .
a) Tính diện tích xung quanh, diện tích toàn phần (tổng diện tích các mặt) của khối rubik đó.
b) Biết chiều cao của khối rubik là \[63,7\] mm. Tính thể tích của khối rubik đó.|
|
Câu hỏi trong đề: Bộ 10 đề thi giữa kì 1 Toán 8 Cánh diều có đáp án !!
Quảng cáo
Trả lời:
a) Đường cao mặt bên hình chóp chính là trung đoạn \[d = 67,5\;\;{\rm{mm}}\]
Diện tích xung quanh của khối rubik đó là:
\({S_{xq}} = \frac{1}{2} \cdot C \cdot d = \frac{1}{2} \cdot 234 \cdot 67,5 = 7\,\,897,5\;\;\left( {{\rm{c}}{{\rm{m}}^2}} \right).\)
Đáy là tam giác đều có cạnh là \[234:3 = 78\;\;{\rm{cm}}\];
Chiều cao của tam giác đáy là \[67,5\;\;{\rm{cm}}\].
Diện tích mặt đáy của khối rubik đó là: \(\frac{1}{2} \cdot 78 \cdot 67,5 = 2\,\,632,5\,\,\left( {{\rm{c}}{{\rm{m}}^2}} \right)\)
Diện tích toàn phần của khối rubik đó là: \({S_{tp}} = 7\,\,897,5 + 2\,632,5 = 10\,\,530\,\,\;\;\left( {{\rm{c}}{{\rm{m}}^2}} \right)\)
b) Thể tích của khối rubik đó là: \(V = \frac{1}{3} \cdot 2\,\,632,5 \cdot 63,7 = 55\,\,896,75\;\;\left( {{\rm{c}}{{\rm{m}}^3}} \right).\)
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là: D
Ta có: \(3x\left( {x - 2} \right) - x + 2 = 0\)
\(3x\left( {x - 2} \right) - \left( {x - 2} \right) = 0\)
\(\left( {x - 2} \right)\left( {3x - 1} \right) = 0\)
Suy ra\(x - 2 = 0\) hoặc \(3x - 1 = 0\)
Do đó \(x = 2\) hoặc \(x = \frac{1}{3}.\)
Vậy tổng các giá trị của \(x\) là: \(2 + \frac{1}{3} = \frac{7}{3}.\)
Lời giải
A = \frac{4}{{{x^2} + x + 1}}\) và \(B = \frac{2}{{1 - x}} + \frac{{2{x^2} + 4x}}{{{x^3} - 1}}\) với \(x \ne 1.\)
a) Thay \(x = - 2\) (thỏa mãn) vào biểu thức \(A\) ta được:
\[A = \frac{4}{{{{\left( { - 2} \right)}^2} + \left( { - 2} \right) + 1}} = \frac{4}{{4 - 2 + 1}} = \frac{4}{3}.\]
b) Ta có \(A = B + C\) nên \(C = A - B\)
\(C = \frac{4}{{{x^2} + x + 1}} - \left( {\frac{2}{{1 - x}} + \frac{{2{x^2} + 4x}}{{{x^3} - 1}}} \right)\)
\( = \frac{4}{{{x^2} + x + 1}} - \frac{2}{{1 - x}} - \frac{{2{x^2} + 4x}}{{{x^3} - 1}}\)
\( = \frac{4}{{{x^2} + x + 1}} + \frac{2}{{x - 1}} - \frac{{2{x^2} + 4x}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}\)
\( = \frac{{4\left( {x - 1} \right) + 2\left( {{x^2} + x + 1} \right) - \left( {2{x^2} + 4x} \right)}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}\)
\( = \frac{{4x - 4 + 2{x^2} + 2x + 2 - 2{x^2} - 4x}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}\)
\( = \frac{{2x - 2}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}\)
\( = \frac{{2\left( {x - 1} \right)}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}\)\( = \frac{2}{{{x^2} + x + 1}}\)
Vậy với \(x \ne 1\) ta có \(C = \frac{2}{{{x^2} + x + 1}}.\)
c) Với \(x \ne 1\) ta có \[C = \frac{2}{{{x^2} + x + 1}} = \frac{2}{{{x^2} + 2 \cdot x \cdot \frac{1}{2} + \frac{1}{4} + \frac{3}{4}}} = \frac{2}{{{{\left( {x + \frac{1}{2}} \right)}^2} + \frac{3}{4}}}\]
Mà \({\left( {x + \frac{1}{2}} \right)^2} \ge 0\) nên \({\left( {x + \frac{1}{2}} \right)^2} + \frac{3}{4} > 0\), do đó \[C = \frac{2}{{{{\left( {x + \frac{1}{2}} \right)}^2} + \frac{3}{4}}} > 0\] với mọi \(x \ne 1.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
