Câu hỏi:

16/11/2025 8 Lưu

Cho hàm số \(f\left( x \right) = \frac{{x + 3}}{{x - 1}}\). Hàm số gián đoạn tại điểm nào?

Hàm số gián đoạn tại \(x = 1\).

Hàm số gián đoạn tại \(x = 3\).

Hàm số gián đoạn tại \(x = - 1\).

Hàm số gián đoạn tại \(x = - 3\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hàm số \(f\left( x \right) = \frac{{x + 3}}{{x - 1}}\) không xác định tại \(x = 1\). Do đó hàm số gián đoạn tại \(x = 1\). Chọn A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

\(\lim \frac{{a{n^3} + {n^2} - 4}}{{2{n^3} + 1}} = \lim \frac{{a + \frac{1}{n} - \frac{4}{{{n^3}}}}}{{2 + \frac{1}{{{n^3}}}}} = \frac{a}{2}\).

Suy ra \(\frac{a}{2} = - 2 \Leftrightarrow a = - 4\).

Trả lời: −4.

Lời giải

Ta coi độ cao nảy lên lần thứ nhất là \({u_1} \Rightarrow {u_1} = 12 \cdot \frac{2}{3} = 8\).

Khi đó \({u_2} = \frac{2}{3}{u_1};{u_3} = \frac{2}{3}{u_2};....\)

Đây là cấp số nhân lùi vô hạn với \({u_1} = 8;q = \frac{2}{3}\).

Khi đó tổng quãng đường quả bóng di chuyển là

\(S = 12 + 2{u_1} + 2{u_2} + ... + 2{u_n} + ...\)\( = 12 + 2\left( {{u_1} + {u_2} + ... + {u_n} + ...} \right) = 12 + 2 \cdot \frac{{{u_1}}}{{1 - q}}\)\( = 12 + 2 \cdot \frac{8}{{1 - \frac{2}{3}}} = 60\).

Trả lời: 60.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

\(2\).

\(0\).

\( - \frac{3}{5}\).

\( - 3\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

\(\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = \frac{1}{2}\).

\(\mathop {\lim }\limits_{x \to 0} f\left( x \right) = \frac{1}{4}\).

Hàm số \(f\left( x \right)\) liên tục tại \(x = 2\).

\(\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = \frac{3}{4}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP